
www.manaraa.com

1 * 1 National Library
of C a n a d a

Bibliothfeque nationale
du C anada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa. Ontario
K1A0N4

Direction d es acquisitions et
d e s services bibiiographiques
395, rue Wellington
Ottawa (Ontario)
K1A0N4

VtV» Votn’ rt'Vrr’r’i'c'

(\n U:i» Noht1

NOTICE AVIS

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

La qualite de cette microvorme
depend grandement de la qualite
de la these soumise au
microfilmage. Nous avons tout
fait pour assurer une qualite
superieure de reproduction.

S’il manque des pages, veuillez
communiquer avec Puniversite
qui a confere le grade.

La qualite d’impression de
certaines pages peut laisser a
desirer, surtout si les pages
originales ont ete
dactylographiees a I’aide d’un
ruban use ou si Puniversite nous
a fait parvenir une photocopie de
qualite inferieure.

La reproduction, meme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subsequents.

Canada
R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Managing
Software Development

Knowledge:

(€©SBB)

B y

Nagi Ghali

Thesis Submitted
to the School o f Graduate Studies

in partial fulfilm ent o f the requirements
for the Master’s degree in Computer Science

under the auspices o f the Ottawa-Carleton
Institute for Computer Science

U N IV E R S IT E
D’ OTTAW A

U N IV E R S IT Y
O F O TTA W A

© Nagi Ghali, Ottawa, Canada, July 1993

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

1 4 b I National Library
■ ^ ■ 0 f C a n a d a

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa. Ontario
K1A 0N4

Bibtiothdque nationale
du C anada

Direction d es acquisitions et
d e s services bibliographiques

395, rue Wellington
Ottawa (Ontario)
K1A0N4

YO uttib

Our fib Notw ttitorvnc©

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

L’auteur a accorde une licence
irrevocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, prefer, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
person nes interessees.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L’auteur conserve la propriete du
droit d’auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent etre imprimes ou
autrement reproduits sans son
autorisation.

ISBN 0 -315 -89627 -2

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UNIVERS1TE D’OTTAWA
6COLE DES ETUDES SUP£HIEURES ET DE LA RECHERCHE

UNIVERSITY OF OTTAWA
SCHOOL OF GRADUATE STUDIES AMD RESEARCH

PERMISSION DE REPRODUIRE ET DE DISTRIBUER LA THESE - PERMISSION TO REPRODUCE AND DISTRIBUTE THE THESIS

now oc iAtrnuft**AWf 0* avimom
GHALI, N ag i

WUM KWTAU4UVUMO ABOXISl
1 2 7 -6 2 6 K in g L d w arl A v en u e ,

O t ta w a , O n t a r i o KIN 9N2
OftUX̂XOAN DOBtf NTOH*** OtUMTIO

M. C . S . 1 993
tttm k u mew mu or t

MANAGING SOFTWARE DEVKLOPMENT KNOWLEDGE: A CONCEPTUALLY-ORIENTED SOFTWARE

ENGINEERING ENVIRONMENT (COSEE)

L’AUTEUR PERMET, PAR l > PRESENTS, LA CONSULTATION ET LE P R fT

DE CETTE THfiSE EN CONFORMITE AVEC LES REGLEMENTS ETABUS

PAR LE BIBLIOTHECAtflE EN CHEF DE L’UNI VERStTE DOTTAWA. L’AUTEUR

AUTORISE AUSSI L'UNIVERSITE DOTTAWA. S E S SU C C ESSEU R S ET CES-

SIONNAIRES. A REPRODUIRE CET EXEMPLAIRE PAR PHOTOGRAPHIE OU

PHOTOCOPIE POUR FINS DE PRET OU DE VENTE AU PRIX COUTANT AUX

BI9LI0THEQUES OU AUX CHERCHEURS OUI EN FERONT LA DEMANDE.

LES DROITS DE PUBLICATION PAR TOUT AUTRE MOYEN ET POUR VENTE

AU PUBLIC OEMEURERONT LA PROPRIETE DE L’AUTEUR DE LA THESE

SO U S RESERVE DES REGLEMENTS DE L’UNIVEBSITE DOTTAWA EN
MATlERE DE PUBLICATION OE THESES.

THE AUTHOR HEREBY PERMITS THE CONSULTATION AND THE LENDING O F

THIS THESIS PURSUANT TO THE REGULATIONS ESTABUSHED BY THE

CHIEF LIBRARIAN OF THE UNIVERSITY OF OTTAWA. THE AUTHOR ALSO AU

THORIZES THE UNIVERSITY OF OTTAWA, ITS SUCCESSORS AND ASSIGN

EES, TO MAKE REPRODUCTIONS OF THIS COPY BY PHOTOGRAPHIC

MEANS OR BY PHOTOCOPYING AND TO LEND OR SEU. SUCH REPRODUC

TIONS AT COST TO LIBRARIES AND TO SCHOLARS REQUESTING THEM.

THE RIGHT TO PUBUSH THE THESIS BY OTHER MEANS AND TO SELL IT TO

THE PUBLIC IS RESERVED TO THE AUTHOR, SUBJECT TO THE REGULA

TIONS OF THE UNIVERSITY OF OTTAWA GOVERNING THE PUBLICATION OF

THESES.

1/ 7/93 M y g&JL
imJtiuai O aataHQAc iauthoai

' M I I iM SC U M C O M PM N Q ttW llM H I I f rtUMN

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

UNIVERSITY DOTTAWA
UNIVERSITY OF OTTAWA

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

UNIVERSITE D'OTTAWA UNIVERSITY OF OTTAWA

e c o L E d e s Et u d e s s u p e h ie u h e s
ET DE LA RECHERCHE

SCHOOL OF GRADUATE STUDIES
AND RESEARCH

GHALI, Nagi.

M.C,S.......

AI/ICUR DE LA TXtSC-AUDfOfl O f fW f&J

DEPARTMENT OF COMPUTER SCIENCE... ;
f K i x n . c c o i t a te fjm u c jiT 'fK U irr . school o i m w i i i i

TITRE OE L A T H E S E -r/r tfO F TOE THESIS

MANAGING SOFTWARE DEVELOPMENT KNOWLEDGE:
A CONCEPTUALLY-ORIENTED SOFTWARE
ENGINEERING ENVIRONMENT (COSEE)

D. Skuc.e _____
oiRtcrtun DC u jmCse.(«ms sunrnison

EXAMINATEUBS DE LA THfiSE-TOESJS EXAMINERS

A Mill.

J.

7u~c0tw6e LtcanwlrnJotii «urtnegftti\ \ etocukocachc / COLOfMAOUmSDJOttS
AMQAtSeAJKH ,

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

www.manaraa.com

T m m y

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

A b s t r a c t

Softw are developm ent, especially fo r large and com plex
system s, has long been recognized as a d ifficu lt and expensive
process. Major software development problems (such as insufficient
reuse of softw are, inadequate m achine assistance fo r softw are
developers, uncoordinated tools, excessive tim e spent during the
m aintenance phase, and poor docum entation) have not yet been
p ro p erly a d d re ssed . M ost cu rren t so ftw a re d ev e lo p m en t
environm ents do not provide sa tisfac to ry so lu tions fo r these
p rob lem s.

In our research, we investigated these problem s and we will
suggest a solution that will help to eliminate some of them. We built
an environm ent called COSEE (C onceptually -O rien ted Softw are
Engineering Environm ent), on top of a know ledge m anagem ent
system (CODE). In COSEE, we captured three most important types of
know ledge needed by softw are developers/m ain tainers: dom ain
knowledge, design knowledge, and implementation knowledge. We
dynam ically linked COSEE to the program m ing env ironm en t
(Smalltalk-80) to create a unified knowledge management system for
software development. We used the object-oriented approach as our
design m ethodology and S m alltalk-80 as our im plem enta tion
language. We illustrated our approach using the ATM (Automated
Teller Machine) example.

Keywords: softw are engineering environm ent, softw are
developm ent, know ledge m anagem ent system , object-
oriented program m ing

i

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

A ck n o w led g m en ts

My special thanks go to my supervisor Dr. Douglas Skuce for his
support, advice and patience; without his direction, this thesis would
have looked much d ifferen t and would have been much less
com plete.

My deep thanks go to my parents for their patience and support
throughout my studies; their advice and encouragement have always
helped me to achieve my goals and it always will.

Finally, I would like to thank Dr. John Pugh and Dr. Ali Mili for
accepting the responsibility of reviewing this work.

ii

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Table Of Contents

C hapter 1
In tr o d u c tio n .. 1

1.1 Major Knowledge-Related Problems in Software
Development... 1

1.2 A Knowledge-Based Approach to Software Development... 6
1.3 Organization of the Thesis...9

C hapter 2
Softw are D evelopm ent System s... 10

2.1 Programming Language Environm ents......... 10
2.1.1 The Smalltalk-80 Environment.. 11
2.1.2 The Lisp Environment... 1 4
2.1.3 The C/C++ Environment...16

2.2 Computer Aided Software Engineering (CASE)
E n v iro n m en ts ...1 8

2.3 Knowledge-Based System s.. 22
2.3.1 Generic Knowledge-Based Systems..............................22

2.3.1.1 CODE...23
2.3.1.2 CYC..25
2.3.1.3 SB-ONE..27

2.3.2 Knowledge-Based Software Assistants (KBSA).........28
2.3.2.1 LaSSIE...31
2.3.2.2 CODE-BASE... 3 4
2.3.2.3 The Programmer's Apprentice Project..........3 6

2.4 Hypertext System s.. 4 0
2.5 Summary and Relevance to Our W ork..4 2

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

C hapter 3
Knowledge in the Software Engineering Process 4 4

3.1 Kinds of Software User.. 4 4
3.2 Kinds of Knowledge Representation... 46
3.3 Kinds of Knowledge Sources...4 8

3.3.1 Software-Based Systems.. 4 8
3.3.2 Documentation.. 49
3.3.3 Human Experts..5 0

3.4 Knowledge with Current Knowledge Sources.........................51
3.4.1 Knowledge Management Problems in

Current Software Systems... 5 1
3.4.2 Problems with Docum entation..................................... 5 3
3.4.3 Problems with Human Experts................................... 5 4

C hapter 4
C o n cep tu a lly -O rien ted S oftw are E n g in eerin g
(COSE)5 5

4.1 Domain Knowledge in COSE... 6 1
4.2 Design Knowledge in COSE... 6 3
4.3 Implementation Knowledge in COSE... 6 6

C hapter 5
Softw are D evelopm ent Using a K nowledge
M anagement System ...68

5.1 COSEE: Conceptually-Oriented Software Engineering
Environment...71

5.1.1 CODE Basic Concepts...7 3
5.1.2 Representing Knowledge in COSEE............................... 7 6

5.1.2.1 Domain Knowledge... 7 6
5.1.2.2 Design Knowledge...7 8
5.1.2.3 Implementation Knowledge..................................8 0

iv

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5.2 The ATM Example... 81
5.2.1 ATM Domain Knowledge.. 8 5

5.2.1.1 Generic Domain vs. Application-Specific
Concepts...8 5

5.2.1.2 Domain Concept H ierarchy...............................8 6
5.2.1.3 Domain Property Hierarchy................................. 88

5.2.2 ATM Design Knowledge..97
5.2.3 ATM Implementation Knowledge.................................. 101

5.3 Features of Knowledge Management Systems Useful for
Software Developers ... 107

5.3.1 Knowledge Representation Features107
5.3.2 User Interface Features... 110
5.3.3 Proposed Enhancem ents... .119

5.3.3.1 Proposed Enhancements to CODE4119
5.3.3.2 Proposed Enhancements to COSEE121
5.3.3.3 Enhancements to the Knowledge Base122

C hapter 6
Summary & Conclusions... .123

6.1 Conclusions from the Experim ent.. 123
6.2 General Conclusions on the Relation of Knowledge

Engineering to Software Engineering ...126

Bibliography ... 128

V

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

List of Figures

Fig 1.1 Three Viewpoints for Software Knowledge 7
Fig 2.1 A Smalltalk-80 Brow ser.. 12
Fig 2.2 CODE4 Browser...23
Fig 3.1 Kinds Of User In The Software Engineering Process 45
Fig 4.1 COSE: A Software Development A pproach..................................55
Fig 4.2 Users' Benefits From COSEE.. 59
Fig 5.1 COSEE Linked To Other Systems & T o o ls.................................... 69
Fig 5.2 COSEE.. 72
Fig 5.3 The ATM Structure... 82
Fig 5.4 COSEE Browsers...84
Fig 5.5 ATM Domain Generic & Application-Specific Concepts.... 85
Fig 5.6 ATM Domain Knowledge- Top Level Concepts........................ 86
Fig 5.7 ATM Domain Knowledge- All Concepts... 87
Fig 5.8 ATM Whole-Part Diagram.. 89
Fig 5.9 ATM Finite State Diagram..91
Fig 5.10 ATM States... 92
Fig 5.11 ATM Actions...93
Fig 5.12 Relation of ATM Concepts To Default Ontology In

CODE4..96
Fig 5.13 ATM Design- 0 0 Class Subhierarchy... 97
Fig 5.14 ATM Design- 0 0 Behaviour... 99
Fig 5.15 ATM Implementation - C lasses... 102
Fig 5.16 ATM Implementation - B ehaviour.. 104
Fig 5.17 ATM Feedback P anel.. 114
Fig 5.18 ATM M ask...115
Fig 5.19 ATM Property Comparison M a trix ... 116
Fig 5.20 CODE4 Control Panel...117

vi

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Chapter 1

Introduction
We begin by describing the m ajor knowledge-related problems

in software development, what will be our approach to solving these
problems, and the organization of the thesis.

1.1 Major Knowledge-Related Problems in Software
D e v e l o p m e n t

It is generally agreed that developing and maintaining software,
especially very large softw are system s, is very d ifficu lt and
expensive. As Selfridge [Selfridge 90] argues: "Before attempting a
particular task, a developer must often spend a great deal of time
discovering features of the system, including the overall organization
of the software and the location and details of specific functions and
data structures". Robson et al. [Robson et al. 91] point out that:
"Software maintenance is recognized as the most expensive phase of
the software life cycle. The m aintainer program m er is frequently
presented with code with little or no supporting document, so that the
understanding required to modify the program comes m ainly from
the code."

In develop ing a softw are system , the fo llow ing m ajor
knowledge-related problems can be identified:

1

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

1 Introduction

• Complexity of the domain

• M anagement of software knowledge

• Rediscovery of knowledge during the software process

• Inadequate knowledge available to the maintainer

• Insufficient reuse of software

• Inadequate machine assistance for software developers

• Poor docum entation

Complexity o f the Domain:

The complexity of the domain (application area) and of the task
itse lf presents a potential challenge to the softw are developm ent
process. Thus, much time is spent gaining an overall understanding
of the problem before beginning a specific task. Basili [Basili 90]
points out that: "Most software systems are complex, and modification
requires a deep understanding of the functional and non-functional
requirem ents, the mappings of functions to system components and
the interaction of components". Wirfs-Brock et al. [Wirfs-Brock et al.
90] explain also: “Software applications are complex because they
m odel the com plexity o f the real w orld. These days, typical
applications are too large and complex for any single individual to
u n d e rs tan d ” .

M anagem ent o f Software Knowledge:

Many serious problem s in software developm ent derive from
the inadequate m anagem ent o f software know ledge, ranging from
knowledge about the programming concepts and domain knowledge
to knowledge about existing software systems. Software engineers,
especially novices, spend a lot of time trying to search, explore,

2

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

1 Introduction

discover and understand softw are knowledge. This problem is
partially due to the lack of tools and techniques for properly storing,
representing, sharing and com m unicating knowledge; it also stems
from the lack of agreement between software developers on concepts
and terminology of the system under developm ent. Com munication
can break down also because the special characteristics o f software
and the particular problems associated with its developm ent are
misunderstood. When this occurs, the problems associated with the
software crisis are exacerbated som etim es causing errors due to
preconcep tions acquired in d iffe ren t academ ic and industria l
backgrounds. Software know ledge is som etim es inconsisten t or
poorly represented making the software life cycle slower and longer
than if it were represented using a more disciplined technique; we
shall propose such a technique in this thesis.

Rediscovery of Knowledge during the Software Process:

One of the problems in software development and maintenance
is that knowledge is lost during the software process. This loss of
knowledge requires constant rediscovery. It happens frequently that
knowledge generated in one phase is not transm itted to the next
phase, adding an expensive rediscovery activity to every phase of the
process.

Inadequate Knowledge available to the Maintainer:

S oftw are m ain tenance consum es m ost o f th e softw are
developm ent process, m aking the overall cost of the softw are
development very high. A major problem in the maintenance phase
is that knowledge available to the m aintainer is not adequate to
effectively maintain the system . As Jarke [Jarke 92] points out:
"Today's softw are system s are hard to m aintain and reuse. The
primary reason is their lack o f integration. Although programmers
have many individual tools at their disposal, there is no formal

3

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

1 Introduction

integration across development stages, between the systems and its
environm ents, or across developm ent tasks". O ften, softw are
maintainers experience a lot of difficulty understanding the rationale
behind an existing software system, even if it is documented. But
software m aintenance is critical and vital: As W irfs-Brock et al.
[W irfs-Brock et al. 90] explain, combining a new piece of software
with an existing one adds potentially numerous interactions with
other pieces already in the system. Each bug that is fixed is capable
of introducing numerous other bugs in seemingly unrelated parts of
the system. An application can reside in a system for a long time and
as it persists, it accumulates a variety of patches and m akeshift
accommodations. As a result, the more it gets fixed, the harder it
becomes to fix it.

Insuffic ient Reuse o f Software:

As trad itio n a l softw are system s evolve, developers and
m aintainers rarely reuse the analysis, the design, or even the code
that was used earlier in the system; they reinvent the wheel. This
situation is common in the software life cycle. As Bhansali et al.
[Bhansali e t al. 90] observe: "In developm ent and subsequent
maintenance of software systems, there are numerous occasions when
a problem being solved is identical or bears a similarity to a problem
that has been solved earlier". The process of solving the same
problem s, by repeating the same solutions or by providing other
solutions, drives the cost of the software life cycle up and reduces the
quality of the software.

Software reuse has been introduced prim arily to circum vent
this phenomenon. As Freeman [Freeman 87] points out: "the primary
objective of reusable software engineering is to reduce the system-
life cycle cost and improve the quality of systems. The objective
includes the specific goals of reusing designs as well as code,
capturing problem-domain information in a manner that facilitates its
reuse, avoiding redundant work whenever possible, and amortizing

4

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

1 Introduction

the cost of a piece of software over the largest possible number of
system s".

Inadequate Machine Assistance for Software Developers:

Software developers do not get sufficient assistance from
current software development tools. As Ambriola et al. [Ambriola et
al. 91] point out: "In practice, people involved in developing software
find the current situation frustrating, because existing tools supply
only a small amount of automated assistance and tool integration".

Poor Docum entat ion:

A m ajor p rob lem in so ftw are d ev e lo p m en t is poo r
documentation. Documents can be far from accurate and may not
reflect the system’s main aspects. They may contain ambiguity or use
terms inconsistently. They are frequently incomplete, inconsistent, or
outdated. Often, developers and m aintainers spend excessive time
trying to understand the application dom ain, the design, or the
implemented system, due to poor documentation. [Sametinger et al.
92] discuss the documentation problems and point out its importance
on the software life cycle: “By improving the availability of complete
and up-to-date docum entation, we can m inim ize softw are costs
considerab ly” .

Knowledge-related problems will always affect the quality of
the software as long as the knowledge m anagem ent issue is not
properly addressed. Hayes-Roth et al. [Hayes-Roth et al. 91] highlight
the im portance of knowledge engineering in software developm ent:
"Regarding softw are developm ent in general, we have found the
knowledge-engineering paradigm of increm ental developm ent to be
highly appropriate whenever questions exist about what kind of
performance is desirable, feasible, or attainable".

5

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

1 Introduction

1.2 A K now ledge-B ased A p p ro ach to S o ftw are
D e v e l o p m e n t

Our approach to confronting the problems described above is
the follow ing: because softw are developm ent is a continuous,
cooperative process o f analysis and reanalysis, design and redesign,
program m ing and program reorganization, all pertinent knowledge
should be stored in a repository (i.e. a knowledge base) linked to the
development tools. As Hayes-Roth et al. [Hayes-Roth et al. 91] explain
the component needed in software applications: "The key difference
between the new applications and more traditional ones was the need
to im plem ent and in tegrate know ledge-processing com ponents; for
lack o f better term inology, we call such com plex heterogeneous
applications cooperative or intelligent system s”.

Our approach will dem onstrate a prototype base that offers
assistance to softw are engineers through the use o f artific ia l
intelligence techniques. We will describe how one could use an
interactive knowledge management system (CODE) for managing the
d ifferent kinds of software knowledge needed during the software
developm ent process.

A lthough our m ethodology can be applied to any kind of
software development, we will concentrate our discussion on ob jec t-
orien ted software development. While this is not completely general,
we choose it for the following reasons:

a) Object-oriented development is becoming a widely-used technique
today .
b) Our methodology is sufficiently general to be used for other non
object-oriented software development as well.

In the object-oriented paradigm, “everything” is an object with
states and behaviours. O bject-oriented softw are developm ent has
been introduced as a fram ework that allows for a direct, natural
correspondence between a model and the world, to solve some of the

6

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

I Introduction

problems in the software life cycle. Software development has been
sign ifican tly im proved by using the fo llow ing ob jec t-o rien ted
fea tu res:

• I n h e r i t a n c e : More specific objects inherit behaviour from more

general ones.

• R euse: Reusing software components improves the productivity of

the software process.

• A b s t r a c t io n : The representation o f objects are hidden from their

u se rs .

• Encapsulation: Every object contains the knowledge and behaviour
that are relevant to it.

• P o ly m o rp h s im : The ability of many objects to respond to the

same message pattern.

We will manage software development knowledge by looking at
software knowledge from three different points of view (V iew p o in ts)
as shown in Fig 1.1: domain knowledge, design knowledge, and
implementation knowledge. Our framework will store m ajor types of
knowledge needed by software developers and m aintainers:

/ •

B ntRj [p 0 © timi @ ira H a a t t 0 ® m i
G £ i f i) ® w l l @ $ g) © K i n i ® w G ® d I g j ® ^ © © w D © ^ ®

v

Fig 1.1 Three Viewpoints for Software Development

7

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

1 Introduction

• Domain knowledge that captures all knowledge pertinent to the
application dom ain, w ithout any consideration of the design
decisions.

• Design knowledge that captures all knowledge about the system
design and its rationale, without requiring any dependency on
the im plem entation language. In many situations however, the
design may depend on the implementation.

• Implementation knowledge that captures all knowledge about
the im plem entation of the design including the very low-level
details of the implementation phase.

A software developer always needs to refer to these types of
knowledge, and a m aintainer should understand the overall system
from all these points of views. Majidi et al. [Majidi et al. 91] argue
that: "Understanding a software system requires extensive expertise
and know ledge in the problem dom ain and in design and
program m ing techniques."

We will show how m ajor kinds of softw are developm ent
knowledge can be encoded in a machine-usable form that is also very
human-usable. Our focus will be on three important phases of object-
oriented development: the description (analysis) of the domain, the
design of the software system, and the implementation of the design.
The maintenance phase can use knowledge from any of these three
levels.

We will dem onstrate how to represent dom ain knowledge,
design knowledge, and implem entation knowledge in a knowledge
base. These three viewpoints reflect the manner in which a system
evolves from its in itial description to its final im plem entation.
P o i n t e r s between these viewpoints, in both directions, will help
c la rify the m appings from requirem ents and from design to
implementation. In our research, we have put strong emphasis on
the domain knowledge and the design knowledge, and relatively

8

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

1 Introduction

little emphasis on the implementation knowledge.

The knowledge base will be dynamically linked to an object-
oriented software developm ent environm ent (Sm alltalk-80) so that
the developers (or maintainers) may access existing knowledge about
the software component libraries.

The well-known Autom ated T eller M achine (ATM) exam ple
([Rumbaugh et al. 91] and [Wirfs-Brock et al. 90]) will be discussed to
illustrate the usefulness of our framework: it focuses mainly on the
domain and design knowledge.

1.3 Organization o f the Thesis

In Chapter 2, we describe some example of the best current software
developm ent system s that assist the softw are user during the
developm ent process.

In Chapter 3, we discuss various kinds of software users, knowledge
representations, knowledge sources and their m ajor problems.

In Chapter 4, we present our conceptually-oriented developm ent
approach for representing software know ledge, including the three
v ie w p o in ts : d o m ain k n o w le d g e , d e s ig n k n o w le d g e , and
im plem entation know ledge.

In Chapter 5, we describe an interactive knowledge management tool
(CODE) and our approach (COSEE) to use it for software engineering.
We also explain the example used, features offered by our approach
for software developers, and our proposed enhancem ents for further
resea rch .

In Chapter 6, we offer our conclusions from the experim ent and
general conclusions on the relation of know ledge engineering to
software engineering.

9

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Chapter 2

Software Development Systems

R ecent research on softw are engineering has attem pted to
simplify the development of software systems by providing powerful
tools and sophisticated environments. However, software developers
still require m ore assistance and guidance from more in telligent
systems. A key problem, as we see it, is the lack of knowledge
m anagem ent facilities.

In this chapter, we describe a num ber o f current softw are
e n g in e e r in g sy s tem s: p ro g ram m in g lan g u ag e e n v iro n m en ts ,
com puter-aided software engineering (CASE) tools, knowledge-based
system s (generic and softw are assistan ts), and hypertex t-based
systems. Of these, only the last two, as we shall explain in this
chapter, are specifically intended to add substantial new knowledge
m anagem ent capabilities.

2.1 Program m ing Language Environm ents

M any ob jec t-o rien ted languages (and som e conven tiona l
languages) include extensive programming environm ents, as well as
graphical user interfaces (GUIs). These environments may include
tools for browsing through existing code, writing new code, running
code, debugging code, and inspecting objects. There may also be tools
fo r track ing source code m odifications in a m ulti-program m er
environm ent and for analyzing space and/or time efficiency.

10

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

Smalltalk-80, Common Lisp, and C++ are considered to have the
best programming language environments that provide the user with
a rich environm ent for developm ent and m aintenance. These
system s are intended to provide w ell-in tegrated support in the
developm ent of applications by single and m ultiple users. In
addition, the languages used in these environm ents usually provide
strong abstraction mechanisms for data and control, and include a
high degree of uniformity both in the representation of objects (data
structures, docum ents, program s, tools) and in the paradigm of
interaction among different com ponents. These environm ents have
powerful capabilities due to the absence of software layers and the
uniqueness o f the implementation language: they include tools to
inspect and even modify the global state o f the system. Although
these systems feature the extensive use of user-friendly graphical
interfaces [Ambriola et al. 91], they do not feature true graphics;
mainly their graphic interfaces are prim arily text-oriented and not
p ic tu re -o rien ted .

2.1.1 The Smallta lk-80 Environment

The S m allta lk -80 program m ing env ironm ent w as w ritten
entirely in the object-oriented language Sm alltalk-80, and supports
the development of applications in the same language.

Program m ing in the Sm alltalk-80 environm ent consists of
defining new classes and methods or m odifying existing system
classes and m ethods; thus an app lica tion extends the global
environment. Fig 2.1 shows a typical view of a Smalltalk-80 browser:

11

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

ST (3)

Collections-Abstri
Collectlons-Unord
Collections-Seque
Collections-String
Collections-Text
Collections-Arrayi
Collectlons-Strear
Collectlons-Suppo

i x

I
LargeNegativelnte
LargePosltlvelntej
LlmltedPrecislonRf
Number
Personalldentiflcat
Random

Hnstancet class

accessing
testing
comparing
truncation and rou
enumerating
factorization and d
bit manipulation

// aNumber
‘Answer the result of dividing the receiver by the argument
The result Is rounded down towards negative infinity to make It
a whole Integer.*

selfisZero
Iff rue: [/'selfl.

q > self quo: aNumber.
(q negative

iff rue: [q * aNumber — self]
ifFalse: [q - 0 and: [self negative aNumber negative]])

IfTrue: [*q - 1 Truncate towards minus Infinity*]
 False: [Tfl___________________________________ y

Fig 2.1 A Smalltalk-80 browser

A d v a n t a g e s :

• At the end of a working session, the user can save a snapshot (the

state of the virtual memory: compiled methods, system objects,
screen bitmap) in a file.

• The only way to share code or structure among developers is
th rough file s that con tain c lass descrip tions and m ethod
defin itions.

• The graphical interface plays a key role in the system, and the
extensive use of windows, menus, and mouse allows for friendly
interaction with the environm ent. The user interface to the
Sm alltalk-80 system ,s a m ultipurpose in terface, designed to
facilitate text and graphics creation and m anipulation, program
development, and information storage and retrieval.

12

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

• The Smalltalk-80 environment includes several kinds of browsers,
a debugger, and several inspectors. Although Smalltalk-80 has not
been significantly changed since it first appeared (ten years ago),
it equals or surpasses its competitors in the sophistication of its
environment and the elegance of its implementation of the object-
oriented paradigm. For example, Objectworks/Smalltalk’s principal
programming tool is the system browser. Its capabilities include
not only browsing the code library, as its name suggests, but
editing, compiling, and printing any selected portion of it as well.

• Sm alltalk-80 environm ents accom m odate program m ers’ concept
ualizations of objects as independent, com m unicating agents by
providing tools that allow them to work directly with instances.
As Pugh et al. [Pugh et al. 90] explain: "Smalltalk is much more
than a program m ing language - it is a com plete program
developm ent environment. It integrates in a consistent manner
such features as an editor, a compiler, a debugger, a spelling
checker, print u tilities, a window system , and a source code
m anager".

• Smalltalk-80 also provides some features that help users find
classes, methods or messages-sent.

• Sm alltalk-80 provides increased modularity and encourages

generaliza tion .

S h o r t c o m i n g s :

• The chief disadvantage from our point of view, is that some classes
are difficult to understand, usually because they are inadequately
docum en ted .

• It takes several months to become familiar with Smalltalk-80,
both language and system.

• As Esp [Esp 91] points out, code browsing is sometimes an
uncertain and inconvenient process, involving several levels of
indirection (m essage-sends).

13

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

• An important aspect of programming in Smalltalk-80 is finding and
reusing existing classes. Experienced program m ers can decide
whether and how to use a given class only if they understand its
purpose and its pertinent methods. As Tarumi et al. [Tarumi et al.
88] point out: "As for reusing classes, Smalltalk provides no user-
friendly tools for retrieving classes. Program mers must have
enough knowledge about the class library by reading manuals of
each class, or by reading program codes".

• Nash et al. [Nash et al. 91] explain that Smalltalk-80 applications
cannot be separated from their environment.

• The system has no ability to display any information graphically.
U sers can 't draw any graphics without extensive programming.
Newer tools can at least draw hierarchical graphs, but Smalltalk-80
does not yet have this feature.

2.1.2 The Lisp Environment

Lisp is the second oldest high-level programming language still
in use, after Fortran. The major Lisp environments have most of the
features of the Sm alltalk-80 environm ent. A lthough the basic
languages are different, there exist object-oriented extensions of Lisp;
e.g. CLOS (Common Lisp Object System). W e will restrict our
discussion to CommonLisp since it is the only major Lisp in use today.

A d v a n t a g e s :

• CommonLisp provides a set of features for prototyping
knowledge-intensive systems. White et al. [White et al. 89] explain
that a L isp environm ent contains a program in terp reter, a
dynamically linking loader, and a garbage collector. Because all
these fea tu res are p resen t at every poin t in the program
development cycle, Lisp acts as its own command language, its own
macro processor, and its own debugger. Such an environm ent
d iffe rs considerab ly from those of the m ore conventional

14

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

programming languages.

• In an advanced CommonLisp environment, the loader and
compiler will remember the file in which each definition appears.
When asked to inspect or edit a function, the editor can find out
where the function definition originated and position the editing
buffer over the definition.

• CommonLisp contains a simple but effective technique for
providing on-line documentation: all defining forms (such as those
for variables, constants, types, macros, and functions) provide a
placeholder for a user-supplied docum entation string. Unlike
comments, these documentation strings are part of the program
and can be interrogated. For instance, the function “describe” will
output the documentation string and other information associated
with a symbol. Thus one can find out about symbols in a large
system without having to search text files for relevant comments.

• CLOS is an interactive object-oriented system built on top of
CommonLisp. Classes and methods can be defined and redefined
dynamically, even while the program is running.

• CLOS is productive; it includes com prehensive standard class
libraries so programmers don't have to write as much code. An
unobtrusive garbage collector automatically takes care of memory
management. CLOS has a complete development environment that
includes integrated editors and debuggers.

• Graphical tools such as browsers and profilers help debug the code
and improve performance.

• CLOS provides a great deal of uniformity. As A m briola et al.
[Ambriola et al. 91] point out: "A high degree of uniform ity is
achieved because every structure is a first-class object, namely it
can be referred to (using pointers), passed as argum ent, or
returned by a function. Also the interaction among objects, based
on functional application, is completely uniform".

15

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

S h o r t c o m i n g s :

• As in Smalltalk-80, CLOS does not have any true graph-drawing
capability .

• As Amriola et al. [Ambriola et al. 91] point out: "The computing

model underlying Lisp is by far more complex and semantically
d irty than the ob ject-o rien ted one (obviously we are not
considering pure Lisp)".

• CLOS does not have query-like capabilities over the class/method
s tru c tu re .

2.1.3 The C/C++ Environment

C/C++ also provides a software development environment with
powerful features and tools. It is becoming the most popular object-
oriented language environment. C++ language is built on top of the
conventional C language. It is a hybrid language; Borland C++ and
Microsoft C++ are the best examples of C++ environment.

A d v a n t a g e s :

• Borland C++ fully supports MS-Windows’ advanced features, such
as Object-Linking and Embedding, multimedia and true type fonts.
Optimized windows allow the developer to create, edit, compile
with optim ization, and run W indows applications from within
W indow s.

• A graphical visual Object Browser allows the developer to navigate
through the classes, functions or variables in the code.

• A color-coded syntax highlighter makes the code more readable

and helps spot errors.

• A SpeedBar quickens windows developm ent by employing

recognizable icons to represent frequently used menu items.

• A resource workshop allows the developer to visually create a

16

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

windows user interface without programming.

• A turbo profiler helps spot bottlenecks in the code to streamline

the application’s performance.

• A turbo debugger provides intelligent and interactive debugging on
a single monitor and a tracer helps trace windows errors.

• Application frameworks can be plugged into any developed
system or can be customized.

S h o r t c o m i n g s :

• C++ requires the program to be complete before the developer can
debug or run it. In contrast, using Smalltalk or CLOS, developers
can start debugging without having written all of the lower levels
of the program. They can also change one part of a program and
start debugging the other parts of the program affected by the
change.

Wirfs-Brock et al. [Wirfs-Brock et al. 90] explain the disadvantages of
such program m ing language environments:

• A hybrid language provides a lot of choices - sometimes too many.
Such hybrid programming code can often be harder for others to
understand: for exam ple, the same operator can represent a
message-send in one context and a built-in operation in another,
leading to possible confusion when others try to read the code.

• Existing data types cannot be directly extended. For example, C++
intrinsic data types such as integers and floats cannot immediately
be subclassed because they are not classes. Instead, they must
first be encapsulated within classes, and then a class hierarchy can
be defined around them.

• C++ does not have autom atic memory m anagem ent; exp lic it
language constructs (destructors) allow program m ers to specify
what will happen when an object is deallocated. Explicitly finding
and destroying unused objects can be a tedious, time consuming
and frequently error-prone process.

17

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

2.2 Computer Aided Software Engineering (CASE)
E n v i r o n m e n t s

The term CASE is defined, broadly, as the tools and methods
that support an engineering approach to software development at all
stages of the process.

CASE has been successful in focusing attention on the need to
establish software developm ent as an engineering discipline. The
fundamental rationale for the increase in the use of CASE tools in the
industry is the belief that CASE tools facilita te and enhance
productiv ity and system quality . The developm ent o f CASE
environments has evolved over several years. As Urban [Urban 92]
explains, “users are demanding high level, domain-specific interfaces
to applications, easy-to-use system s, systems that offer increased
productivity/cost ratios and systems that are modular, portable, and
robust” .

A d v a n t a g e s :

• By autom ating many of the more routine software development
task s and perfo rm ing au tom atic tran sfo rm a tio n s betw een
represen ta tions, CASE has dem onstrated an ab ility to boost
productivity and prevent defects.

• Advanced CASE tools are making it more feasible to introduce

sem iform al and formal m ethods to the developm ent process by
rem oving clerical overhead and enforcing rigourous design rule
checking.

• Norman et al. [Norman et al. 92] explain: "A CASE environment lets
systems developers document and model an inform ation system
from its in itia l user req u irem en ts th rough design and
im plem entation and lets them apply tests fo r consistency ,
com pleteness, and conform ance to standards". It provides the
system d eveloper w ith fa c ilitie s fo r d raw ing a sy stem ’s
architecture diagrams, describing and defining functional and data

18

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

objects, identifying relationships between system components, and
providing annotations to aid project m anagem ent. The user's
various work products are stored in an integrated, non redundant
form in a central repository or dictionary either on the workstation
or on a central server or host system. The system definition as a
whole can be checked for consistency and completeness. Analysis
can be performed on the information collected or defined to date,
thus supporting increm ental developm ent and the detection of
inconsistencies and errors early in the life cycle. The
documentation required by organizational o r deliverable standards
can be generated from the system description in the dictionary.
Also, generators for database schemas and program code are being
incorporated in, or interfaced to, CASE environments to provide a
step toward automated system generation.

• A comprehensive CASE development environment for the front end
of the life cycle integrates several component tools and facilities.
The system developer can work on diagrams such as dataflow
diagram s, structure charts, entity-relation diagram s, logical data
m o d e ls , p re s e n ta tio n g ra p h s , s ta te - tr a n s i t io n d ia g ra m s ,
transform ation graphs, and decision m atrices. The user can
directly create diagram s for system docum entation. A nalysis
facilitates check for consistency and com pleteness. End-users
screens and reports can be developed for the system under design.
Deliverable documentation can be organized graphically and can
incorporate diagrams and text from the central dictionary.

• Besides serving as an aid to productivity which helps to capture

system -design know ledge, a CASE environm ent provides new
opportunities fo r using analysis techniques to im prove som e
aspects (such as reliability and efficiency) of inform ation systems
before they are implemented. It can also help verify a completed
system against its design and maintain the system description as
accurate docum entation.

19

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

S h o r t c o m i n g s :
Even so, CASE is not a satisfactory software assistant. Although

CASE has significantly influenced the practice of system development,
its potential is limited by the difficulties involved in integrating tools
in a cohesive environment:

• Among the greatest challenges is the need for tighter integration
among tools in a manner that supports openness to a variety of
methods, notations, processes, tools, and platforms.

• Understanding the software process and getting developers to use
softw are engineering techniques correctly and consistently w ill
remain a problem, especially in the face of evolving technology.

• Forte et al. [Forte et al. 92] explain that while CASE has already
achieved substantial success in defect prevention, we are reaching
a plateau due to the limits of our knowledge about the software
development process. Areas that are particularly weak in process
definition are requirem ents elicitation, software m aintenance, re
engineering, and object-oriented techniques.

• Available CASE tools address only a portion of the maintenance
ac tiv ity and are not w ell in tegrated w ith tools for new
development. It is acknowledged that CASE integration standards
are not mature and will continue to evolve in the future.

• Current CASE technology still encourages an individual approach to
development. A serious shortcoming is the lack of support for the
com m unication betw een developers and end-users and among
developers them selves. CASE environm ents do not incorporate
c o lla b o ra tiv e to o ls (g ro u p w are) to su p p o rt c o o p e ra tiv e
dev e lo p m en t.

• Potential CASE users are looking for open environments spanning
life cycle stages, developm ent ro les , d istribu ted netw orks,
m ultivendor tools and computing platforms.

• CASE tools are still weak in reusing software components. As
Norman [Norman 91] explains: "Current CASE technology does not
p rov ide adequate support for softw are reuse in term s of

20

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

c la s s if ic a tio n , se le c tio n , u n d e rs tan d in g , m o d ifica tio n and
adap tab ility ".

• Lowry [Lowry 91] explains: "The current generation of case tools
are lim ited by shallow representations and shallow reasoning
methods. CASE tools will either evolve into or be replaced by tools
with deeper representations and m ore sophisticated reasoning
m ethods. The enabling technology will come from A l, formal
methods, programming language theory, and other areas o f CS".

TurboCase 4.0
TurboCase 4.0 is good example of a CASE tool. It supports

object-oriented analysis by adding behaviour m odelling to the entity
relationship diagram. It supports object-oriented design with four
diagram types: Class hierarchy, Class Collaboration, Class Definition,
and Class Design diagrams. A data dictionary and checking rules are
linked to these diagrams. Also, TurboCase 4.0 integrates structured
analysis and techniques within its environment.

O b je c T im e
ObjecTime [Selic et al. 92] is another example of an object-

oriented CASE tool that is targeted for even t-driven system s,
including those with a high degree of complexity and distribution. It
enables the creation of executable analysis and design m odels. It
covers a broad spectrum of application, from system architecture and
protocol verification to detailed software design and implementation.
It supports the R eal-tim e O bject-O riented M odelling (ROOM)
m ethodology, encouraging ite ra tiv e developm ent. G raphically -
captured designs are executed and validated in an extensive
integrated run-tim e environm ent. The high-level design paradigms
supporting rea l-tim e include concurren t ob jec ts (h ie ra rch ica lly
decomposed) that communicate via messages through formal protocol
definitions. Complex hierarchical finite-state m achines specify the
behaviour o f such objects. Inheritance can be applied at the design
com ponent level, independent o f the deta il level program m ing
language.

21

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

2.3 K n o w led g e-B ased S ystem s

The difficulty in constructing and maintaining large software
systems based on existing technology has become widely recognized
[Selfridge 90]. A primary challenge consists in the need to maintain
up-to-date knowledge about a complex and evolving system.

The key problem s that arise when designing large software
systems are how to organize a large amount of disparate knowledge
and how to acquire, m aintain and extend that knowledge when
a p p ro p ria te .

Since the early 80s, researchers have been investigating the
notion of using knowledge-based systems to manage large software
systems (such as [Waters 81], [Green et al. 83] and [Neighbors 84]).

F irst developed m ore than two decades ago in a rtific ial
in te llig e n c e re se a rc h , k n o w led g e-b ased sy stem s have seen
widespread application in recent years. W hile perform ance has
largely been the focus of attention, building such systems has also
expanded our conception of a computer program from a black box
providing an answer to an "open” system capable of explaining its
answers, acquiring new knowledge, and transferring knowledge to
users. These abilities derive from the clear distinction between what
the program knows and how that knowledge will be used, making it
possible to reuse the knowledge in different ways.

In this section we discuss two kinds o f know ledge-based
system s: generic know ledge-based system s and know ledge-based
software assistants (KBSA).

2.3.1 Generic Knowledge-Based Systems

G eneric k n o w ledge-based sy stem s are know ledge-based
systems that can be used for any kind of knowledge; they are not

22

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

dedicated to a particular application. These systems share a common
goal which is manage (enter, edit, store, retrieve, etc.) knowledge in a
knowledge base, but they differ in the features they provide to the
user and the inferences they can perform. A number of knowledge-
based systems have appeared during the past fifteen years. We
selected three d ifferen t kinds of know ledge-based system s as
illustrative examples and we will explain how they differ in their
pu rposes.

2.3.1.X CODE

CODE [Skuce et al. 92] is a knowledge management system
specifically designed to meet the needs of in teractive knowledge
m anagem en t.

* hart* M.t2 *- MhwWtl.t2 *-!*»%•
Da

=J S at IS{ tost H an object O Is a member of #.
c

• thing • properties:
• Object • GENERIC DESCRIPTION:

• DataType • purpose: ac ts a s a container for zero or more n
• Mutable DataType • store: things

• Collection « group: members
• Non keyed Collection • actions on:

* Bag • creating:
* * a # Is created by: # new

■ FlnfteSet • getting attributes oft
• List • gee the size

• Keyed Collection • copying;
• Dictionary • copy # to a # S: ■"•S modified

• Array • querying:
• ImmutobleDateType • testing:

• Number • testing only #:
• Integer • te s t If # Is empty:
• Fraction - s o a e s t s a O T M w m t o n n & w a m p s
• Float • occurrences of an object O: ''true if O Is

• Date • comparing:
• Time • compare # with a #: ''boolean
• Character • modifying:

• action on a data type • adding:
• tasting . add a object T to #: * # modified
• modifying • grow:

• adding to • removing:
. a d d - a thing T to - a collection • remove a thing T from #: -# modified

• a d d - a thing T to - a se t X • Initializing:
• copying alt of- • Initialize: modified: s ize- o

• getting attributes from • looping through:
• get the size of- a se t • combining:

• combining • form the union of a # with # : a #
• creating • form the Intersection of a # with #: ~ a 4

• creating by copying * attributes:
• comparing
• looping through || ^boolean• accessing

Fig 2.2 A CODE browser: Understanding prog. lang. concepts

23

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

A d v a n t a g e s :

• As stated in [Skuce et al. 92], CODE combines some of the most
useful features of frame-based inheritance systems and conceptual
graphs, favouring expressiveness over the ab ility to perform
complex autom atic inferencing.

• CODE particularly focuses on assisting users to form ulate and
analyze concepts and word m eanings, and to retrieve relevant
know ledge.

• It can be used for intensive human in teraction like design,
documentation and tutoring. The prime aspects of designing CODE
are its ease of implementation and its ability to help users organize
their ideas in a simple and flexible way. The emphasis is on
allowing the user to do the required inferences freely and easily,
on the support for language-related problems, and on flexible user
interface facilities for locating and viewing knowledge.

• W hile a tten tio n has been g iven to techn ica l know ledge
management, a level o f generality has been maintained to support
knowledge management in any subject area in which concepts can
be reasonably and precisely described. It can be used as an
assistant for prototyping and knowledge experim entation.

• In CODE, the degree of formality can be varied according to the
user's preferences. Knowledge can be a mixture o f very informal
(unstructured natural language) or highly form al (expressed in
some version o f logic); the greater the level o f form ality, the
g reater the system ’s ability to perform syntax and sem antic
checking. The user can sketch knowledge rapidly and later make
it increm entally more correct and formal. The CODE designers
sought a middle ground between systems that were too sim ple to
capture a w ide variety of knowledge and those that were too
com plex, preventing most users from being able to understand
their syntax and semantics.

• To represent a statement in CODE, the user must specify a thing
(the subject) in the "is-a" hierarchy and a predicate in the

2 4

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

predicate hierarchy. Facet predicates allow the user to make
incremental additions to any statement. CODE supports facet-level
inheritance; i.e. not all facets may inherit. It permits users to treat
predicates as concepts, i.e. to make statements about predicates.

• The main inferencing capabilities in CODE are: inheritance,
delegation, and an off-line full first logic order system (FOLDE) to
p e rfo rm fo rw a rd /b a c k w a rd c h a in in g , c o n tra d ic tio n and
inconsistency checkings and semantic errors detection. A natural
language parser (ClearTalk) compiles rules expressed by the user
into a format used by CODE, FOLDE, or another system.

S h o r t c o m i n g s :

• Lacks support for natural language dialogue systems.

• Weak knowledge-base partitioning capability.

• Lacks rule-based inferencing.

• Lacks critiquing of semantic errors.

We do not describe CODE in detail in this section because it is
described further in chapter 5. In this way, the description of our
approach, COSEE, which uses CODE, will be self contained in chapter 5.

2.3.1.2 CYC

Cyc [Lenat et al. 90] is a very large, controversial, frame-based
system used to encode a large amount of common-sense knowledge
that people intuitively use to understand the world. This, it is hoped,
would permit computers to be able to process knowledge, e.g. from
natural language documents, that they otherwise could not use.

A d v a n t a g e s :

• The knowledge base is intended to overcome the brittleness and
knowledge acquisition bottlenecks encountered in current software

25

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

system s.

• It will also support expert systems, natural language systems and
other artificial intelligence systems. As Lenat et al. [Lenat et al.
90] explain, the rationale is that today’s programs do not really
understand natural language very well, they do not have general
knowledge from which to draw conclusions and they do not have
far-flung knowledge to use for comparisons; they are not equipped
to dynam ically grapple with a situation when it exceeds their
current lim itations.

• The goal of designing the Cyc representation language CycL is to
allow users to interact with the system at an epistemological level
as well as at an heuristic level. The epistemological level uses a
language that is essentially a first-order predicate calculus with
augmentation for reification (i.e. having a name for propositions,
and being able to make statements about other statements) and
reflection (e.g. being able to refer to the facts supporting the
system’s beliefs in another fact in axioms). The heuristic levei, by
contrast, uses a variety o f special purpose representations and
procedures fo r speedy inference. The heuristic level is a
"compilation” of the epistemological level. This approach leads to
the existence o f the know ledge base at two levels: the
epistem ological level and the heuristic level, and the user can
interact with CycL at either of these levels.

• Particular emphasis is placed on a large built-in ontology.

• Cyc is designed to act as an automatically as possible since it is
designed to answer user questions entirely on its own.

• Cyc has the ability to make many automatic inferences including

forw ard/backw ard chaining.

• Cyc uses a fram e representation with a variety o f slo t types
representing properties. These slots have the same structure and
always inherit as a whole.

26

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

S h o r t c o m in g s :

• Built-in ontology is complex and controversial. Only the designers
have accepted it.

• Great emphasis is placed on automatic inferencing at the expense

of user expressiveness.

• Lack of a good user interface system. As Skuce [Skuce 92] points
out: "a system like Cyc is an extreme example of one needing a
good user interface". (A user interface undoubtedly exists, but it
has never been described).

2.3.1.3 SB-ONE

SB-ONE [Kobsa 91] is a knowledge representation workbench for
rep re se n tin g co n cep tu a l know ledge, w ith the em phasis on
applications in natural language systems. SB-ONE belongs to the KL-
ONE family that uses automatic classification as its main inference
mechanism [MacGregor 91].

A d v a n t a g e s :

• Special emphasis is put on supporting the knowledge engineer in
building, browsing, and correcting knowledge bases for natural
language dialogue systems.

• Kobsa [Kobsa 91] explains that besides the SB-ONE language, the
w orkbench com prises three d iffe ren t in te rfaces (functional,
textual, and graphical), a partition m echanism , a consistency
maintenance system for the syntactic well-formedness of SB-ONE
know ledge-bases, a classifier, a realizer, a pattern m atcher, a
spreading activation mechanism, an interpreter and classifier for
SB-ONE to SB-ONE translation rules, an integration mechanism for
an external frame-based representation, and a connection between
SB-ONE and an extended Prolog.

• The knowledge representation language handles knowledge at

27

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

three levels: The epistemological level (first order predicate rules
help ex p la in how w ell-fo rm ed know ledge rep re sen ta tio n
expressions can be form ed from know ledge rep resen ta tion
e lem en ts) , the in te rp re ta tio n a l level (re la te s know ledge
representation expressions and elements to the domain), and the
notational level (through the use of graphical and linear notations).

• A TELL/ASK facility accepts the knowledge in textual form with
some constraints and permits the user to do queries.

S h o r t c o m i n g s :

• The main inferencing mechanism is automatic classification, which
is based on the assumption that given a hierarchy of definitions, a
new definition can be classified in this hierarchy according to its
properties. This m echanism , more than in Cyc, lim its the
expressiveness of the users.

• The knowledge unit is a general concept that consists of a concept
predicate, concept name, set of attribute descriptions and concept
.types. An attribute description also forms another structure. SB-
ONE has many complex relations between concepts and attribute
descriptions. This structure and these relations make the system
hard for users to learn and to use.

2 .3 .2 K now ledge-B ased S o ftw are A ss is ta n ts (KBSA)

So-called "Knowledge-based softw are assistan ts” (KBSA) are
systems developed mainly for managing knowledge about software in
a know ledge base. In 1983 RADC (Rom e A ir D evelopm ent
Conference) published a report [Green et al. 83] calling for the
developm ent o f a knowledge-based software assistant, which could
employ artificial intelligence techniques to support all phases of the
softw are developm ent process. Since then, an annual KBSA
conference has been held to provide a forum for discussions and
presentation of work related to the KBSA effort. KBSA provide a

28

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

promising and serious approach for addressing software knowledge
management problems. KBSA is a proposed architecture to aid the
development, evolution, and maintenance of large software projects.
Software development and maintenance under the KBSA paradigm is
fundam entally different from current software engineering practice;
changes are made at any level of the system (e.g. the requirements,
the specifications, the design) rather than ju st to the software itself.
Also, KBSA captures design rationale and can act as an intelligent
software assistant to developers, maintainers, and end-users.

There are different kinds of KBSA based on different criteria;
e.g. transform ation, form ality, language-specific. We will discuss
these three kinds o f KBSA:

1) Transform ational programming (or autom atic program m ing)
attem pts to develop and m ain tain so ftw are system s a t the
specification level and autom atically transform it into production-
quality softw are. This process is achieved with the help o f
knowledge-based tools. An example of this kind of KBSA is KIDS
[Sm ith 90] in w hich users in te rac tive ly perform co rrectness-
preserving transform ations on a form al specification in order to
produce an efficient implementation. The programming is carried out
at a very abstract level: the user describes which algorithmic cliches
to apply, such as sim plification or finite differencing (adding data
storage to a function to prevent unnecessary recalculation). The final
step, inference of the actual im plem entation, is autom atic. Other
systems do not take the approach of transform ational programming;
rather they prefer semi-automatic assistance (e.g. The Program m er’s
Apprentice [Rich et al. 89]). Their current approach represents a
major change: they started their project with the long term goal of
autom ating the program m ing process, but they later changed its
em phasis to that o f building an in te lligen t assistan t for expert
programmers, with more emphasis on the requirements.

2) KBSA that use form al specification m ethods provide a
m athem atical basis for statem ents m ade about softw are. The

29

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

prim ary goal o f fo rm aliz in g sp ec ifica tio n s is to im prove
understanding o f what must be im plem ented, thereby reducing
implementation errors and maintenance. A major benefit of formal
methods is that they make unambiguity possible, but they involve
human creativ ity in producing m athem atical foundations for this
formality. ARIES, described by [Johnson et al. 91], is an example of a
KBSA that uses formal specification.

3) The K no w led g e-In ten siv e D evelopm en t E n v ironm en t
described by [Schoen et al. 88] is a kind of KBSA that uses specific
language to assist in the development of software systems. It uses an
object-oriented language called Strobe, a lisp-based, object-oriented
program m ing language. Strobe is useful in two ways: 1) as a
program m ing paradigm , it is the link that jo ins distinct software
subsystem s in a uniform manner; 2) as a sim ple representation
language kernel, it supports the construction of computational models
which mirror the organization of the physical world in which the
software systems are to operate.

The goals of Knowledge-based software assistants and CASE
tools are similar, and the terminology they use is often the same. The
main difference is that KBSA are derived from artificial intelligence
research while CASE tools come from software engineering research.
CASE is product-oriented while KBSA is process-oriented; CASE is
well-engineered (its greatest strength) while KBSA is a laboratory
pro to type; and finally CASE is team -oriented while KBSA is
in d iv id u a l-o rien ted . T he cen tra l ro le o f m any KBSA is
transform ations; its em phasis on form alism and existing process
orientation are important distinguishing differences. CASE basically
exist only in environments where software engineering is performed,
and does not use formal specifications.

A d v a n t a g e s :

• It acts as an intelligent assistant (both reactive and proactive) to

formally derive code.

3 0

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

• It contains a knowledge base in which the user encodes the
system knowledge and its derivation histories.

• Formal specification can act as a working prototype.

• Systems would be developed through evolutionary

tran sfo rm atio n s.

• The reuse of knowledge. In software development, the concept of
reuse is growing in popularity, thus methods must be devised to
reuse knowledge more effectively. A knowledge-based approach
is linked to reuse and is also needed to m anage/coordinate
knowledge within a project.

• The knowledge-based approach allows for the recovery of
knowledge about the system once software developers are gone.
It also attempts to retain the know-how of software production; in
so far as the concepts used by softw are designers and the
knowledge of programmers can be formalized, software design and
im plem entation becomes a process that is in itse lf recordable,
analyzable, reusable, and to some degree, automatable.

S h o r t c o m i n g s :

• Does not provide a comprehensive approach to software
d ev e lo p m en t.

• Does not help sufficiently in a team environment.

• Need to include extensive graph diagrams capabilities.

• Cannot generate a complete documentation for the developed
sy s tem .

2 .3 .2 .1 L aS S IE

We next discuss an example of a knowledge-based system for
software that is based on a generic knowledge representation, “KL-
ONE” described in [MacGregor 91]. It bears more close comparison to

31

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

our approach than the earlier systems.

The LaSSIE system is a prototype that uses a fram e-based
description language and makes inferences based on its classification
hierarchy. LaSSIE is an attempt to attack the problems of invisibility
(structure of software is hidden) and complexity of software systems.
This approach applies an existing knowledge representation and
reasoning system to the m anagem ent of inform ation about large
systems. The primary motivation is the need for accessing up-to-date
information about a complex and evolving system. Devanbu et al.
[Devanbu 90 et al.] argue that the main problem of large software
systems is the discovery problem, i.e., the problem of learning about
(understanding) an existing system in order to use or modify it.

The LaSSIE knowledge base primarily describes the functioning
of the softw are system from a conceptual view point, with some
information about its architectural aspects. This knowledge base is
intended to help prevent the loss of architecture know ledge by
explicitly codifying the primitives supported by the architecture into
a form al, taxonom ic knowledge base and making it available for
browsing and querying. The LaSSIE’s knowledge base proposed by
[Devanbu et al. 91] contains only action concept descriptions classified
into a conceptual hierarchy. Query processing is carried out in two
stages: F irst, the query is placed in LaSSIE taxonom y by the
classification algorithm , using the description of the query and
descrip tions of the fram es in the taxonomy; then, the m atching
instances are the instances of those frames that are subsumed by the
classified query. These are considered to be the answer. LaSSIE has
a natural language interface that maintains data structures for each of
several types of knowledge. This information includes: a taxonomy of
the domain (which enables the parser to perform several types of
disam biguation), a lexicon (which lists each word known to the
system along with information about it), and a list of compatibility
tuples (which indicate plausible associations among objects and thus
reflect the semantics o f the domain).

3 2

R e p ro d u c e d with pe rm iss ion of th e copyright owner. F u r th e r reproduction prohibited w ithout perm iss ion .

www.manaraa.com

2 Software Development Systems

The knowledge base is built using a c lassification-based
knowledge representation language, KANDOR (a member of the KL-
ONE family), to provide semantic retrieval. Besides serving as a
repository of inform ation about the system , the know ledge base
serves as an intelligent index for reusable components. In KANDOR, a
fram e is considered a com plex d escrip tio n w hich expresses
constraints on members of the class that it denotes. The restrictions
in a frame definition are usually specified in terms of slots, which are
two-place relations that describe the attributes of class members.
Restrictions can be formed by limiting the type of slot-filler expected
or by specifying the maximum and m inim um num ber o f fillers
expected. The values o f the slots are concepts from the taxonomy.
KANDOR performs two kinds of inferences: inheritance of properties
and automatic classification.

A d v a n t a g e s :

• Addresses the problem s of invisibility and com plexity of large
software system s.

• Captures the functionality and the architectural aspects o f the
software systems into a conceptual hierarchy in a knowledge base.

• Has a natural language interface to maintain the data structures of

several types o f knowledge.

• Its knowledge base serves as an in telligent index for reusable
com ponents.

S h o r t c o m i n g s :
Devanbu et al. [Devanbu et al. 91] argue that the lim itations of

LaSSIE are mainly the limitations of KANDOR. These limitations are:

• KANDOR is a domain-independent language, not specifically

designed to represent knowledge about real-tim e softw are in
terms of objects and actions. Thus, there are various aspects of
each that cannot be expressed adequately within its representation
framework, (e.g. KANDOR does not support reasoning based on

33

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

part-o f hierarchies).

• KANDOR seriously limits the expressiveness to make the
classification algorithm faster and easier to implement.

2.3.2.2 CO D E-BA SE

CODE-BASE [Selfridge 90] is a software information system that
uses fram e-based know ledge representations to represent a wide
spectrum of knowledge about telecommunications software. It uses
several techniques to ensure that the knowledge base is synchronized
with the code. While LaSSIE attacks the problem of invisibility and
discovery at a higher level domain, CODE-BASE tries to solve this
problem by linking the domain knowledge to the code itself. CODE
BASE represents a description of C code and generic Unix information.
Selfridge [Selfridge 90] explains: “ the user queries CODE-BASE in a
query language; then, from CODE-BASE, he/she receives a list of
matching instances. The user can create new concepts or categories
and populate them from the results of a query, as well as create
combinations of old concepts. These new concepts can then be used
in subsequent queries” .

CODE-BASE is built on top of Classic (a member of the KL-ONE
fam ily) w hich p rov ides the fo llow ing k inds o f in ferencing :
inheritance, classification, contradiction detection and simple forward
chain ing . I t includes two kinds of au tom atic c lassifica tion :
c la ss if ic a tio n o f concep ts and c la ss if ica tio n o f ind iv idua ls .
C lassification of concepts takes a new concept description and
au tom atica lly p laces it in the proper part o f the taxonom y.
Classification of individuals is similar: given a new individual, Classic
w ill determ ine the concepts that that individual is an instance of.
Concepts are stored in a taxonomy which represents an is-a hierarchy
and provides for the object-oriented inheritance of concept
properties. For knowledge about which individuals are instances of a
particular concept, each concept in the hierarchy has an associated

3 4

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

"meta-concept" that represents the number of individuals that are
instances o f that concept.

CODE-BASE is intended for the reverse-engineering of existing
large systems. It concentrates on representing the code knowledge
that can be extracted automatically. A querying mechanism uses the
code information that is stored in a database and loaded on demand.
There are three types o f code knowledge that are represented in
CODE-BASE. The first is the file and directory structure of the
software base for the telecommunications system. The second is the
definition and use of code objects, including files, functions, macros,
type declarations, and global variables. The third is the set of
processes that make up the software system and the set of messages
between these processes.

The knowledge acquisition in CODE-BASE is done automatically
through systems that extract from C source files the code objects,
their relations with other objects and the places where they are used.
These code objects are then represented in an is-a hierarchy with
in h eritan ce .

Knowledge retrieval is done by typing a query that has to
follow a specific syntax. This query forms a new concept, and
populates the concept with all functions defined in files and matching
a certain string. The user then uses the browsing ability in the
interface to exam ine each function and discovers tha t a certain
function is the primarily function for the query. The user repeats this
process iteratively until the required function is discovered.

A d v a n t a g e s :

• Attempts to solve the problem s of invisibility and discovery by
statistically linking the domain knowledge to the code itself. It is
prim arily intended for reverse engineering o f ex isting large
softw are system s.

• Captures in its knowledge base descriptions about the C code and

35

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

www.manaraa.com

2 Software Development Systems

generic Unix information; i.e. syntactic code knowledge about the
system .

• Extracts the knowledge from the code automatically in the form of
objects and represents them in an is-a hierarchy.

• Uses several kinds of inferencing (such as inheritance of property,
con trad ic tion de tec tion , and sim ple forw ard chain ing) and
automatic classification.

S h o r t c o m i n g s :

• No dynamic link between the domain knowledge and the code
itself.

• Automatic classification of the Classic system limits the
expressiveness in the knowledge acquisition process.

• Knowledge retrieval process presents some complexity and
difficulty for the user.

2.3 .2 .3 The Program m er’s Apprentice Project

The Program m er’s Apprentice project deals with three main
phases of software development. The project itself is considered to
have three phases. Since the project designers started with the
implementation first, these three phases are: im plementation, design,
and requirements. As Rich et al. [Rich et al. 89] explain, the long term
goal of this project is to develop a theory of how expert programmers
analyze, synthesize, modify, explain, specify, verify, and document
programs. The two basic principles underlying this project are; the
assistant approach and inspection m ethods. In general, a clich6
consists of roles (i.e. properties) and constraints (which are used to
specify fixed elements of structure, to verify the parts that fill the
roles, and to compute how to fill empty roles).

3 6

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

T h e P ro g ra m m e r 's A p p re n tic e (PA):
The first phase for the project team was, chronologically, the

implementation phase. An implementation clichd mainly captures
knowledge about the im plem entation using prim ary and described
roles, comments, and constraints. The key to achieving success lies in
the shared programming knowledge that makes the comm unication
between programmers possible. The inspection methods are based on
the premise that, given a library of cliches, it is possible to perform
many program m ing tasks by inspection rather by reasoning from
first principles. The Programmer’s Apprentice focuses on the use of
inspection methods to automate programming. Codifying clichds is a
central activity in this project. The Plan Calculus is used as a formal
representation for program s and program m ing clichds. A Plan
Calculus is essentially a hierarchical graph structure made up of
different kinds of boxes (denoting operations and tests) and arrows
(denoting control and data flow). It com bines rep resen tation
properties of flowcharts, dataflow schemas, and abstract data types.
A related system called Cake consists of a knowledge representation
com ponent and a reasoning component. Cake com bines special
purpose representations, such as frames and the Plan Calculus, with
general purpose logical and mathematical reasoning.

KBEmacs (knowledge-based editor in Emacs) is a prototype of a
part of the PA developed to dem onstrate the usefulness of the
assistant approach and of clichds in the implementation part of the
software process. Two main tasks in the development of a prototype
KBEmacs are: autom atic generation of program docum entation
(explain ing the program in term s o f the c lichds used) and
program m ing language independence. KBEmacs can autom atically
im plem ent a program once a software engineer has selected the
appropriate algorithm ic fragments to use. KBEmacs supports both
retrieval of clichds and reuse. Im plem entation clichds include
knowledge about the program itself (such as file names used, input,
output). A drawback of KBEmacs is that the user must know the
cliches in the library by name to retrieve them. However, all systems
require the user to use exactly the terms known to the system.

3 7

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

The Design Apprentice (DA):
The second phase of the project is the Design Apprentice (DA)

which is a tool that can assist a programmer in the detailed design of
programs. [Tan 89] explains that the tool supports software reuse
through a library of commonly-used algorithmic fragments, or clichds,
that codify standard programming. The clichd library enables the
programmer to describe the design of a program concisely. Design
clichds include know ledge about the specifications, design, and
hardware. Each of these clichds is annotated with information about
what roles and constraints are mandatory, likely, or possible. The DA
can detect some kinds of inconsistencies and incom pleteness in
program descriptions. It automates detailed design by automatically
selecting appropriate algorithms and data structures. It supports the
evolution of program designs by keeping explicit dependencies
between the design decisions made.

The Requirements Apprentice (RA):
The third phase of the project is the Requirements Apprentice

(RA) which assists a human analyst in the creation and modification
of software requirements. Reubenstein et al. [Reubenstein et al. 91]
explain that unlike m ost other requirem ents analysis tools, which
start with a formal description language, the focus of the RA is on the
transition betw een inform al and form al specifications. A major
problem that faces the RA is knowledge acquisition. The RA supports
the earliest phases of creating a requirem ent, in which ambiguity,
contradiction, and incom pleteness are inevitable. It attem pts to
overcom e the p roblem s o f hum an com m unication , espec ia lly
abbreviation, ambiguity, poor ordering, contradiction, incom pleteness
and inaccuracy. The RA accepts a restrictive natural language input
and produces three kinds o f output: interactive output (that notifies
the analyst o f conclusions drawn and inconsistencies detected while
requirem ents information is being entered), a machine Requirements
Knowledge-Base RKB (that represents everything the RA knows about
an evolv ing requirem ent), and a R equirem ents D ocum ent (that
resem bles a trad itiona l requirem ents docum ent sum m arizing the
RKB). The RA is composed of three m odules: a knowledge-

38

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

representation and reasoning system (C ake), an executive that
handles interaction with the analyst and provides high-level control
of the reasoning performed by Cake, and a clich6 library which acts as
a repository o f information relevant to requirements in general and
to domains of particular interest. Compared with implementation and
design cliches, the range of cliches involved in software requirements
is much more open-ended. Any part o f the real world may be
relevant in specifying a requirem ent. In a given application, the
Apprentice will be useful to the extent that the relevant cliches have
been codified.

A d v a n t a g e s :

• Captures three important types of software developm ent
knowledge in the form of cliches: the implementation knowledge,
the design knowledge, and the requirements knowledge.

« The Programmer’s Apprentice (PA) helps in representing
programs and programming cliches, in knowledge representation
and reasoning process, and in autom atic generation o f program
docum en ta tion .

• The Design Apprentice (DA) helps in reusing design components
and in capturing design rationale. It can also perform some kinds
of inferencing (such as inconsistency detection).

• The Requirements Apprentice (RA) helps in the transition stage
from the informal to formal descriptions of the domain.

S h o r t c o m i n g s :

• All three phases require the user to use exactly the same names
and terms known to the system in the process o f knowledge
re triev in g .

• Codifying cliches is a complex task for the user to perform at all

three levels of the project.

• No good user-friendly interface in knowledge acquisition/retrieval.

39

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

2.4 Hypertext Systems

Hypertext systems are systems which allow direct machine-
supported references from one textual or iconic unit to another; they
enable the user to interact directly with these chunks and to establish
new relationships between them. Conklin [Conklin 87] explains the
concept of Hypertext: windows on the screen are associated with
objects in a database, and links are provided between these objects,
both graphically (as labeled tokens) and in the database (as pointers).
Nielsen [Nielsen 90] defines hypertext as a non-sequential writing: a
directed graph, where each node contains some amount of text or
other information and the nodes are connected by directed links. He
also explains that hypertext can be perceived as a computer-based
medium for thinking and communication that extends conventional
linear docum entation.

A d v a n t a g e s :
Conklin [Conklin 87] explains that the advantages of hypertext are:

• Supports structuring

• Features the m odularity and encourages consistency of
in fo rm atio n

• Allows for the customization of documents

• Provides global and local viewing of documents

• Allows for task stacking

• Enables collaboration between users

S h o r t c o m i n g s :

• Conklin et al. [Conklin et al. 89] highlight two major problems with
hypertext: the disorientation problem (the tendency to lose one’s
sense o f location and direction in a nonlinear document) and the
cogn itive overhead (the additional e ffo rt and concentra tion
necessary to maintain several tasks or trails at one time).

4 0

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

• Lucarella [Lucarella 90] focuses on one m ajor shortcom ing of
hypertext systems which is information retrieval. In this context,
the retrieval process is regarded as a process of inference that can
be carried out either by the user exploring the hypertext network
(browsing), or by the system, exploiting the hypertext network as
a knowledge base (searching). A com prehensive model should
take into account both of the perspectives, effectively combining
browsing and searching in a unified framework.

• Smeaton [Smeaton 91] summarizes the main issues and problems
in retriev ing inform ation from hypertext: hypertext uses a
brow sing strategy rather than a searching stra tegy , thereby
reducing the freedom hypertext gives to users in choosing the
information they wish to see.

g IB IS
gIBIS is a hypertext tool that provides a clear and natural

structure for a discussion or a deliberation process. Conklin et al.
[Conklin et al. 89] explain that the goal of gIBIS is to facilitate and
capture policy and design discussions. It im plem ents a specific
method, called Issue Based Information Systems (IBIS) which was
developed for use on large, complex design problems while capturing
the design rationale with little disruption o f the norm al process.
gIBIS makes use of colour graphics and a high speed relational
database server to fac ilita te building and brow sing typed IBIS
networks. It is designed to support collaborative construction of
these networks by any number of cooperating team members spread
across a local area network.

M otivations for gIBIS are the capture of the design rationale,
the support of computer mediated teamwork, and the need for an
application with a large inform ation base that can be used to
investigate and navigate through very large information spaces.

gIBIS can be perceived as a hypertext system with prescribed
semantic types; the IBIS method imposes a limited selection of node

41

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

and link types on the user. The tool does not provide the user with a
brainstorm ing feature; rather the IBIS method requires structured
m ateria ls .

A d v a n t a g e s :

• Intended for capturing the design rationale of complex design
p rob lem s.

• Provides strong browsing capabilities.

• Supports collaborative work between designers; i.e. can be
considered as a groupware.

S h o r t c o m i n g s :

• Lacks support for brainstorming capabilities.

• Cognitive overhead is noticeable; the freedom of choice, inherent
in branching documents (in a network of nodes), simply requires
substantial care from the w riter and considerable attention from
the reader.

2.5 Summary and Relevance to Our Work

Our goal is similar to the software systems (all types) discussed
in th is chap ter: to p rovide an environm ent for softw are
dev e lo p m en t.

Compared to specifically other KBSA systems (LaSSIE, CODE
BASE, and The Programmer’s Apprentice), we share the same goals:

• Use a knowledge-based system for software development

« Encode software knowledge in a knowledge base in an

organized and a structured way:

• LaSSIE describes the functional and architecture aspects

• CODE-BASE describes the implementation knowledge

4 2

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

2 Software Development Systems

• The Programmer’s Apprentice describes requirements,
design, and implementation knowledge

However, all software systems still weak in:

• Providing a wide assortment of knowledge management

capab ilities

• Providing support for natural-language related problems

• Relying heavily on external documentation

• Having limited scope; designed to perform specific functions

• Being uncoordinated; no link between them

In particular, most KBSA have the following shortcomings:

• Strongly limits user expressiveness due to the use of knowledge

representation systems designed to support automatic inferencing

• No good user friendly interface in either the knowledge acquisition
or the knowledge retrieval (complex and iterative process)

• No links between the knowledge base and the program m ing
en v iro n m en t

t Requires the user to enter queries using exactly the same names
and terms known to the system in the know ledge retrieval
process

43

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Chapter 3

Knowledge in the Software
Engineering Process

In this chapter, we describe our perception of the different
k inds of u se r, d if fe re n t k inds o f know ledge types and
representations, and different kinds o f knowledge sources. We are
preparing the reader to better understand our approach to solving
the software knowledge-related problems discussed in chapter 1. We
will describe the knowledge needed by the various people involved in
software development, the pros and cons of the different kinds of
know ledge represen tation , and the kinds o f knowledge sources,
noting their advantages and shortcomings.

3.1 Kinds o f Software User

The developm ent and use of a software system involves a
number of people; we can divide them into two categories: customers
(often termed “users”) and systems personnel (who are them selves
users of software development tools).

4 4

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

3 Knowledge in the Software Engineering Process

Software Users

System s Personnel
Customers

MaintalnersDevelopersDecision-makers End-Users

System s System s Programmers
Analysts Designers

Fig 3.1 Kinds of Software Users in the Software Engineering Process

Custom ers include decision makers and end-users. Decision
makers, such as bank managers, can be defined as those people who
choose to in tegrate some o f the work in their institu tions or
organizations with a computerized system. The decision makers often
specify high level requirements for the new system; in addition, their
primary concern is generally that the system satisfy their needs and
be easy to use. End-users are those people that w ill use the
developed system and they, too, have specific requ irem ents.
Prim arily, end-users look for a system that includes a user-friendly
interface. Decision makers can either be end-users or they can be
participants in the agreem ent between end-users and developers.
C ustom ers com m unicate th e ir requ irem en ts and the dom ain
knowledge to system developers by using docum ents and through
discussions. In general, customers must interact with the developers
at the requirements level and must be shielded from the complexity
of specifications and system design. Norman et al. [Norman et al. 92]
explain the role of the custom ers in the ultim ate quality of the
product: "The quality of upstream products is determ ined by how

4 5

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

www.manaraa.com

3 Knowledge in the Software Engineering Process

well system s personnel can get users and managers involved in
developm en t" .

System s personnel can be divided in to tw o categories:
developers and maintainers. Developers include: systems analysts,
system s designers, and program m ers. System s analysts are
responsib le for specifying requirem ents and for describ ing the
application domain so that systems designers can understand it and
map its concepts into specifications and system design; evidently, the
system s an a ly st m ust understand the requ irem en ts and the
application domain before describing them. Then, systems designers
design a system that programmers can implement using a suitable
program m ing language. The system s designer m ust clearly
understand the analysis of the requirem ents and the application
domain, and must be capable of differentiating between relevant and
irrelevant domain concepts. For the programmer, it is very important
to understand the system design and its rationale. Closely related to
the developers are the system m aintainers. M aintainers either fix
bugs in the developed system or modify/extend an existing system.
Their primarily role is to understand the system and how it should be
maintained. For both the developer and the maintainer, knowledge is
m ost valuable when it is w ell-represented and com plete. Thus,
knowledge management plays an important role in the development
and m aintenance of a robust software system that m axim izes the
p roductiv ity /cost ratio .

3.2 Kinds of Knowledge Representation

K now ledge can be represented in many forms; e.g. natural
language, mathematical expressions, diagrams, tables, and actual-code
or pseudo-code.

Knowledge expressed in natural language is usually written in
documents in the form of statements. Natural language reflects the
manner in which humans communicate and is easier to use than other

4 6

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

3 Knowledge in the Software Engineering Process

forms of knowledge representation for most purposes. However, if a
computer is to be actively involved in communication, there must be
at least some level of formality, such as syntax rules and a parser to
verify that formal rules are followed when analysing statem ents
expressed in natural language. Natural language causes problems due
to the ambiguity of grammar rules and semantic interpretation rules.

Knowledge can be represented in very formal notations, such as
mathematics. Although this kind o f representation is very reliable
and precise in expressing knowledge, since it has a logical foundation,
it has some shortcomings. It is very difficult for many people to
fam iliarize them selves with and to use m athem atical notations.
Everyone involved must be familiar with these notations. In addition,
many concepts or relations cannot be described mathematically.

Knowledge expressed in diagrams can communicate knowledge
very effectively. These diagrams often involve the use of notations,
conceived by a variety of people, and using varying degrees of
formality. Diagrams usually consist of linked nodes. Knowledge is
represented both inside nodes or on the links betw een nodes.
Although diagrams may contain complex notations, they can be very
expressive in manipulating and in comm unicating knowledge. This
kind of representation is often easier to understand than purely
textual representation.

Knowledge expressed in tables is also very useful for showing
many aspects and features of concepts. Knowledge is represented in
the form of rows and columns. It can show common properties and
values among these concepts. It can also clarify the difference
between two or more concepts. Spreadsheets, like Lotus 123 and
QuattroPro, have become very popular over the past few years due to
their tabular nature and the functional dependency among their rows
and columns.

Knowledge expressed in actual code is often difficult to follow; it
o ften req u ires a g rea t deal o f e ffo rt to u n d ers tan d the

4 7

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

3 Knowledge in the Software Engineering Process

implementation rationale. Often, maintainers spend hours trying to
understand the existing code before attem pting to perform any
changes in the system. Even so, a programmer may get lost after
working for some time in the same system or even within the same
m odule. K now ledge about code itse lf is often inadequately
documented, usually only as unstructured comments.

Another kind of knowledge representation is p s e u d o - c o d e .
This representation takes the m iddle ground between design and
im plem entation; it must provide a smooth transition between them.
However, it is often not associated with the system once it has been
developed, nor is it frequently updated.

3.3 Kinds of Knowledge Sources

Knowledge can be captured and extracted from many sources;
e.g. software system s, docum entation, and human experts. These
differing sources have both advantages and disadvantages to people
seeking knowledge. We discuss next some such sources.

3 .3 .1 Softw are-Based Systems

Softw are-based system s should provide the m ost re liab le
source of knowledge. Such systems can be divided into programming
language environm ents, CASE tools, knowledge-based system s, and
hypertext systems, as discussed above.

Program m ing language environm ents provide the developers
with tools to help them find knowledge related to the implementation
phase, to access existing libraries, and to find existing code.
P rogram m ing language environm ents allow developers to store
comm ents everywhere in the system, but usually have no facilities
for searching these comments.

48

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

3 Knowledge in the Software Engineering Process

CASE tools provide the developers with diagram s containing
knowledge about the system being developed. Some CASE tools allow
developers to generate documented diagrams.

K now ledge-based system s provide the developers w ith a
knowledge base in which to access knowledge about previously-
developed or existing systems. These knowledge-based systems have
some knowledge representation capabilities which allow them to
store, represent, and retrieve knowledge.

H y p e rtex t-b ased system s p ro v id e the d e v e lo p e r w ith
capabilities to manage knowledge through the use of nodes and links.
Knowledge is stored in nodes which may contain other nodes, and
knowledge between nodes explains the relationships between the
different nodes.

3.3 .2 D ocum enta t ion

Conventional docum entation is probably the m ajor source of
know ledge about softw are. Docum ented know ledge is m ainly
expressed in natural language, augmented by diagrams, mathematical
expressions, or tables. Primarily, documents are intended to provide
the developer with a clear picture of the system developed. A typical
document must be conceptually and physically organized, consistent
and correct, contain all necessary knowledge, and be easy to access
and to manage. Documentation exists in different media; e.g. paper,
electronic files. E lectronic docum entation is m ore effic ient than
documentation on paper, as the former can be more easily browsed,
manipulated, and transferred than the latter. Some documents are
structured, easy to read, and organized while others do not follow any
format and are major sources of misconception and error. Some
documents are written as concisely and precisely as possible, while
others poorly represent the actual system, are far from accurate, and
do not reflect the system’s main aspects. Some documents fall out of
date while others are kept up to date. Some documents are written

49

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

3 Knowledge in the Software Engineering Process

by people that do not have sufficient knowledge about the system
w hile others are w ritten by professionals. Sam etinger et al.
[Sametinger et al. 92] explain the importance of documentation in the
m aintenance phase, the m ost tim e-consum ing phase in softw are
d ev e lo p m en t: "D evelopm en t p rog ram m ers hate p ro d u c in g
docum entation w hich is, therefore, alm ost never consisten t or
co m p le te . M ain tenance p rogram m ers need docum en ta tion to
understand the software system for which they are responsible."

Documents about software systems must be kept up to date as
the system s evolve and m ust reflect the current system. These
documents should contain a variety of representations of the software
system. They must also be accurate, organized, readable, and easy to
m aintain and access. Understanding programs is one of the most
time-consuming activities in software maintenance. By improving the
availability of complete and up-to-date documentation, we can reduce
software costs.

3.3.3 Human Experts

Human experts are a major source of knowledge, but often
much of their knowledge is inaccessible. Human experts include both
domain experts and developers. They typically have a great deal of
know ledge, and some may have made notes of their knowledge
(although these might be informal or incomplete). Domain experts
are the m ost knowledgeable people within a given dom ain; they
usually provide the analysts with the necessary domain knowledge.
Developers have to act as experts in providing their expertise to other
developers in order to produce efficient software systems. Often,
expert developers have docum ents from prev iously developed
system s. Typically, their primary method of comm unicating their
knowledge is through verbal discussions or written documents.

50

R e p ro d u c e d with pe rm iss ion of th e copyright owner. F u r th e r reproduction prohibited w ithout perm iss ion .

www.manaraa.com

3 Knowledge in the Software Engineering Process

3.4 Problems with Current Knowledge Sources

Often, knowledge communication presents m ajor problem s to
people. Knowledge can be hard to find or may not exist; it may be
scattered throughout a particular environm ent, it may be irrelevant
or too low level or not adequately detailed, it may lack rationality, it
may be inconsistent, incomplete or out of date, and it may be invalid.

Such problem s are typical of cu rren t know ledge sources.
Knowledge about a software system is usually distributed among
source code, documentation, and experts.

We w ill now describe a variety o f typical know ledge
management problems that may occur in different tools commonly
used in software development.

3.4.1 Knowledge Management Problems
in Current Software Systems

Current softw are system s contain many know ledge m anagem ent
problems:

Programming language environm ents do not provide adequate
assistance for finding knowledge; developers are often frustrated in
their efforts to find appropriate library functions, procedures,
modules, or classes. Often, they spend a lot of time browsing existing
libraries to find what they want; but libraries are usually large, they
often do not use the correct terminology, and their components are
often inconsistently or incompletely described. The ability to browse
existing code is lim ited to sim ple, trad itional m echanism s, as
knowledge is not integrated within the different parts o f the system
being developed. These environments do not provide any capabilities
for conceiving the system from different points of view. Smalltalk-
80 environm ent is a good example of an environm ent that needs
better knowledge management capabilities:

51

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

3 Knowledge in the Software Engineering Process

• A user usually has to pass through several levels of
indirection (message-sends) in order to understand a certain
m ethod .

• A programmer/maintainer must rely heavily on variable
nam es or com m ents to understand existing classes and
m ethods.

• As explained earlier in section 2.2.1, Smalltalk-80 provides
only primitive tools for retrieving classes or methods.

• Indexing methods or classes depends on knowing their
correct names.

CASE tools, which are intended to provide powerful assistance
to developers, still lack capabilities ([Forte et al. 92] and [Norman 91])
in:

. Requirem ents elicitation.

• Understanding the software process.

• Support for the communication between developers and end-
users and among developers/m aintainers them selves.

. Knowledge representation and inferencing.

. Support for language-related problems.

K now ledge-based system s, which rep resen t know ledge in
concept hierarchies and perform some inferencing, still lack some key
fea tu res:

• they have not matured enough to support an engineering
approach to software development.

• (most of them) do not support natural language processing.
Those who do, treat it as a front end but not part of their
design .

. they cannot generate complete documentation from their
knowledge base

. (most of them) lack sophisticated graphical user interface
capab ilities .

52

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

3 Knowledge in the Software Engineering Process

Hypertext-based systems, which provide an excellent medium
for thinking and communication, have not yet provided satisfactory
solutions for the following problems ([Conklin et al. 89] and [Lucarella
90]):

• Information retrieval process.

• Combining two important processes together: browsing and
searching .

• Disorientation and cognitive overhead (as explained earlier in
section 2.4).

• Brainstorm ing ability,

• Support for natural language-related problems.

3.4 .2 Problems with Documentation

Documents that are written in human or natural language often
contain am biguity, are poorly organized, do not provide adequate
assistance for finding the required knowledge, e.g. a good index and
do not allow for querying, filtering, or masking, etc... to be performed
on their contents. They often lack a glossary, or use terms
inconsistently or ambiguously.

Problems with documentation stem mainly from the manner in
which documents are produced. Documentation typically is produced
by documentation teams comprised of people who were not originally
involved in the project, causing a knowledge transfer problem. These
people are called ’’Technical writers". Even if they were collaborating
with the systems personnel, they often cannot produce correct and
com plete docum entation . D evelopers (o r m ain tainers) may not
provide them with all the information they need or they may forget
some of it. Perhaps technical writers' docum entation is organized,
consistent, and readable, but often, there is no standard way to
ensure that their docum ents accurately describe the developed or
m aintained softw are system . If developers try to docum ent
developed systems, they either write the documentation in the code

5 3

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

3 Knowledge in the Software Engineering Process

itself or in a file separate from the developed environment. Often
they may do this poorly, since they are not skilled writers and do not
enjoy this task. Sametinger et al. [Sametinger et al. 92] point out the
disadvantages of both methods. If they use separate files, there
w on't be any connection betw een the source code and the
corresponding documentation file. If they write the documentation
straight into the source code, the source code may become harder to
follow if too many comments are embedded, and the comments
cannot be adequately structured or indexed.

3.4,3 Problems with Human Experts

Human experts, used as knowledge sources, present other major
problems: experts have difficulty expressing their expertise in a
concrete form; when they have to comm unicate their thoughts to
someone who is not familiar with the domain of expertise, there is
often difficulty in reaching an agreem ent on term inology between
experts and developers; they may forget some important details until
after the system has evolved too far, they may skip some details
assum ing the developer has their same understanding; and they
themselves may not be aware of some of the details in their domain.
They have a good understanding of the application domain and an
abstract model in their mind of how the system will be developed
and how it will function. Ideally, they should make note of this
knowledge, as it may help others to understand the system more
quickly and easily.

5 4

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Chapter 4

Conceptually-Oriented Software
Engineering (COSE)

In this chapter, we describe our approach, C onceptually-
Oriented Software Engineering (COSE), to developing software systems
based on managing knowledge in three important v iewpoints : domain
knowledge, design knowledge, and implementation knowledge. Each
will be treated within a common generic knowledge representation
framework. These kinds of knowledge are:

K n ow le d ge
about the
a p p l i c a t i o n
dom ain

K nowledge
about the
s y s t e m
d e s i g n

K n o w le d g e
about the
s y s t e m
i m p l e m e n t a t i o n

Domain
Knowledge

Design
Knowledge

Implementation
Knowledge

Fig 4.1 COSE: A Software Knowledge Development Approach

55

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

4 Conceptually-Oriented Software Engineering (COSE)

• Domain knowledge: knowledge about the application domain
without any consideration of design decisions (This knowledge is
mainly needed by other team analysts). We include in domain
knowledge requirem ents statem ents, which can be specifically
flagged as such.

• Design kno w led ge : knowledge about the system design and its
rationale, usually without any dependency on the implementation
language (This knowledge is mainly needed by programmers and
other team designers).

• Im p lem en ta t ion knowledge: knowledge about the im plem enta
tion of the design including the code-level details (This knowledge
is mainly needed by maintainers and programmers).

Our guiding principle is that all three viewpoints (types of
knowledge) should be easily locatable, understandable, in sim ilar
format, and hence easily reusable. Knowledge maintenance can take
place in any one of the mentioned viewpoints and reduces the risk of
software inconsistency or invisibility . We believe that software
engineering should not be separated from knowledge engineering, i.e.
that software engineers need a lot of assistance with knowledge
m anagem ent concepts and techniques. Our approach is consistent
with the view presented by [Jarke 92]: "In requirements specification
or analysis, you need the freedom to define application-specific
concepts and terminology. In contrast, during the design phase, you
need a predefined but powerful set of constructs to represent a
system perspective".

In the next three paragraphs, we will describe in more detail
the three different kinds of knowledge that we believe are essential
in software development:

56

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

4 Conceptually-Oriented Software Engineering (COSE)

Domain Knowledge

S ince dom ain a n a ly s is a c tiv ity in v o lv es hum an
com m un ica tion and c o n ce p tu a l ag reem en t am ong
developers and analysts, we believe that the softw are
development process should start with a conceptual model
representing all the relevant concepts of the domain. Our
approach is consisten t w ith the view advocated by
[Greenspan et al. 88]: "The conceptual modelling level is
necessary in order to provide a modelling platform (at a
higher level than that offered by the Basic Object Level),
for introducing domain-specific concepts". By Basic Object
Level, Greenspan means the identification of dom ain
objects (concepts) that will eventually be transformed into
a design. The role of this model is to define these
concepts, their properties and their relationships to each
other to assist in assuring that the systems personnel are
in close conceptual and terminological agreement with the
customer. Hence our approach is to represent the domain
knowledge in a conceptual (is-a) hierarchy. And since the
requirem ents are dependent on many of the dom ain
concepts, we represent them in the same hierarchy. This
conceptual model is totally independent of any software
or system s concepts or term s. Hence, it should be
completely understandable by the customers, so they may
validate it.

Requirem ents statem ents can be associated w ith each
concept. Any statement can be flagged (using a CODE
facet) as being a necessary , op tional, o r negative
re q u ire m e n t.

57

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

4 Conceptually-Oriented Software Engineering (COSE)

Design Knowledge

Since we believe that concepts are the abstractions of
objects and the m ajority of their properties are the
abstractions of behaviour and states, we take an object-
oriented approach in our design. Design knowledge is
organized around a hierarchy of classes with knowledge
about their behaviour and states also represented in
associated h ierarch ies . T his design know ledge is
language-independent, i.e. it can be implemented in any
object-oriented language, and is of possible use to anyone,
except the domain expert, involved in the development
process.

Im p le m e n t a t io n K n o w le d g e

F in a lly , im p lem en ta tion know ledge is rep resen ted
similarly in another hierarchy that captures the details of
the system and is therefore dependent on the language
used for the coding. This knowledge represents all the
details of the implementation, which for object-oriented
programming, are mainly descriptions of the classes and
methods of the system.

F o llow ing our th ree v iew poin t approach (C O SE), our
environment will assist the following types of users:

• Domain experts

• A n a ly sts

• D esigners

• P ro g ram m ers

• M ain ta in ers

58

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

4 Conceptually-Oriented Software Engineering (COSE)

Maintainor

S y s tem
Designe

ProgrammerDomain S y s tem
Expert Ana ly s t

I m p l e m e n t a t i o n
K no w l e d g e

De s i gn
K nowl e dge

Domain
Knowl edge

Fig 4.2 Users' Benefits from COSEH

Kozaczynski [Kozaczynski 91] explains: "An effective way to
support softw are understanding is to answ er d ifferen t kinds of
questions that the user may have”.

For each of these three types of knowledge, we have another
orthogonal dimension in which we differentiate between “generic”
and “application-specific” concepts; i.e. concepts that are more general
than this application and concepts that are specific to the application.
These differences will be described in more detail in section 5.2.1.1
when we describe the ATM example.

Before we describe the viewpoints in detail, we explain several
basic concepts behind our representation. Knowledge is divided into
units we call c o n c e p t s . A concept is anything we want to say
something about, often denoted by a noun phrase. To express the
properties of these concepts, we make what we call s ta tem en ts about
each concept. The statem ents them selves can be arranged in a
hierarchy sometimes called the property or the statem ent hierarchy.

We also introduce the notion of the formality spectrum: Knowledge
representations can have three “degrees” of fo rm a l i ty :

5 9

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

4 Conceptually-Oriented Software Engineering (COSE)

• I n f o r m a l R e p r e s e n ta t io n s are mainly used in the domain
knowledge to capture the relevant concepts. They are unrestricted
and do not have any syntax or sem antics. Currently most
knowledge-based systems contain some kind of inform ality often
through comments.

• Sem i-F orm al R epresen ta t ions take the middle ground and have
some parts of the representation interpretable by the computer,
but others only for human users. For example, task specific objects
(e.g. decision, goal, claim) can be semi-formal objects with their
own attributes and form ally related, but the system may allow
these attributes values to be filled in by designers in form of
informal descriptions or other semi-formal objects that the user
might choose to create. The system then processes the descriptions
to the extent that they have been formalized, but leaves others for
human processing. The appeal of the semi-formal representation
approach is that there is relatively less overhead in capture (in
fact, semi-formal representations can be easier to deal with than
inform al represen ta tions by suggesting w hat inform ation is
expected and defau lts), yet users can define com putational
operations exploiting the form alized part of the representation.
[Conklin et al. 89] is a good example of a system that uses a semi-
formal representation. The decision of choosing the degree of
formality should be dependent on what the user needs: e.g. an
automated assistance is required or not. The more form ality the
more orientation towards the autom ation process and m achine
assistance .

• F orm a l R ep rese n ta t io n s have the advantage of having formal
semantics and being interpretable by computers and having well-
established inference procedures, but they may be hard to create
and comprehend. M athematical notations can be attached to the
knowledge and the machine may be able to handle them properly.
For exam ple a m achine can do serious theorem proving using

6 0

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

4 Conceptually-Oriented Software Engineering (COSE)

first-order logic, but VDM [Jones 89] cannot be executed because it
embeds too much m athem atics and logic. Also, the domain
knowledge needed to understand form al representations is often
missing. On the other hand, informal representations are easy to
create and natural, but they are not interpretable by computers
and rely on human processing alone.

In the next three sections, we will explain our approach to
software development, COSE, by describing the problem s resulting
from poorly managing each of the three types of software knowledge
discussed earlier, how other approaches try to solve these problems,
and how COSE proposes to deal with these problems.

4.1 D om ain Know ledge in COSE

Requirements analysis has been recognized as one o f the most
critical and difficult tasks in the construction of software system s
[Reubenstein et al. 91]. As one moves from an informal description of
an application to a formal (or at least semi-formal) representation of
it, errors are often introduced due to incorrect understanding of the
desired properties of the system. Reubenstein et al. seek to solve this
problem in the Requirements Apprentice project: "The focus of the RA
is on the form alization phase that bridges the gap between an
informal and formal specification. This is a crucial area of weakness in
the current state o f the art". In the preliminary phase of software
development, the systems analyst must have some knowledge about
the domain in order to produce an accurate description of the
application domain. If the analyst has none initially, there must
somehow exist a way to acquire it; either by consulting experts or
app ropria te m ateria ls . O ften , com m unication p rob lem s and
m isunderstandings occur between the custom er and the analyst.
Differences of terminology and concepts often create problems in the
analysis process. The problem s o f m isin terpretation and bad
com m unication also arise when groups o f analysts cooperate in

61

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

4 Conceptually-Oriented Software Engineering (COSE)

analyzing requirem ents o f complex problems. In such situations,
different analysts usually focus on different parts of the problem. In
doing so, they may develop different ways to referring to domain
concepts, or make different assumptions about them. They may
choose to model the domain in different ways, and make different
simplifying assumptions. As a result, the evolving system description
is sometimes incomplete and does not precisely reflect the application
dom ain .

Current software engineering analysis methodologies and tools
(like structured analysis and CASE tools) do not provide sufficiently
com prehensive means of representing, defining, and managing the
concepts of the application domain. These tools represent only
certain kinds of knowledge and leave the rest out. Existing object-
oriented analysis and design methodologies (e.g. [Rumbaugh et al. 91]
and [Booch 91]) are built around the computer notion of "object",
ignoring the natural description of the domain concepts and the
freedom to express one's conception about the domain. These tools
and methodologies are very good only for a certain type of knowledge
representations (e.g. finite state diagram, entity-relationship diagram)
while others have to be dealt with purely informally or unstructured
English comments. Even if we use these tools in our development, the
num ber of bytes of know ledge they end up storing can be
considerably less than the number of bytes that are stored as natural
language documentation that has to go on with it. Evidently, there is
much more knowledge that these tools cannot capture, i.e. it still has
to be captured in a natural language form. Our approach seeks to
elim inate these limitations and constraints in describing the domain.
Our approach, can be viewed as an extension of the object-oriented
analysis approach since we capture a w ider variety o f domain
knowledge types not ju st knowledge pertinent to the object-oriented
design task.

We believe that a better solution for these analysis problems
lies in conceptual analysis (CA). By conceptual analysis, we mean a
description of all the different concepts in the domain (including

62

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

4 Conceptually-Oriented Software Engineering (COSE)

requirements analysis concepts) and the relationships between them.
Our approach to analysis is to represent these domain concepts by
both a conceptual hierarchy and a h ierarchical descrip tion of
properties as well. We capture both dom ain know ledge and
requirements in a unified framework that describes both the domain
and the corresponding design and implementation concepts. Explicit
pointers will define these correspondences. For example, in the ATM
example, the domain concept of a bank account may be reflected in a
design object class also called BankAccount.

This dom ain know ledge is independent of any softw are
perspective view. All concepts introduced and described must be
validated in principle by the domain expert. Software designers will
rely on this kind of knowledge before and during the design phase.
Others (e.g. implementors and maintainers) will rely on it after. Our
approach in capturing the domain knowledge can be used for any
kind of design, not only object-oriented design on which we are going
to focus.

4.2 Design Know ledge in COSE

Software design is perhaps the central activity in software
development; errors at this stage are cosily to rectify, and the quality
of a design greatly affects the flexibility and adaptability of the final
system. Design is often regarded as an art performed by designers
who start their work by trying to understand the described domain
and by mapping requirem ents and specifications into a com plete
software design system. The design of software is a complex process
requiring the software designer to simultaneously perform a variety
of knowledge-intensive activities. These include the exploration and
analysis of design alternatives, the consideration and reuse of existing
components and solutions, the learning of the management of design
goals, dependencies, and partial solutions, and the recording of design
decisions. The system design phase determ ines how the system
performs the functionalities that are required.

63

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

4 Conceptually-Oriented Software Engineering (COSE)

V arious design m ethodologies have been in troduced (e.g.
[Rumbaugh et al. 91] and [Wirfs-Brock et al. 90]). Each attempts to
give the designer a conceptual framework or o n to lo g y to assist in
structuring the design. For example, Wirfs-Brock et al. [Wirfs-Brock
et al. 90] introduce some design concepts that help structure a design.
They define the concept "Responsibility” as the service that an object
can provide, the concept "Contract" as the set of all requests a class (a
c lien t) can m ake from another c lass (se rver), the concept
"Collaborations" as the set of requests a class can make of other class
in order to fulfill a certain responsibility, and the concept "Protocol"
as the set o f cohesive responsibilities provided by a class. In our
design know ledge, class responsib ilities can be described and
collaborated classes can be specified for every responsibility. Mainly,
a program m er needs to understand why a specific responsibility is
introduced and how a class interacts with other classes. Following
[W irfs-Brock et al. 90] m ethodology, we also partition the class
behaviour into protocols to reduce the design complexity.

Although our approach could be used in any kind of design, our
effort is focused on the design of object-oriented systems. We believe
that ob jec t-o rien ta tion provides a m eans to associate softw are
components to entities of the application world, thus making the
design more natural. The object-oriented paradigm is one of many
ways to achieve m odularity in a program . In an object-oriented
design approach, the result o f a system design is a group of classes
with their methods. Our approach to software design is to capture all
knowledge about the design in a framework that provides a clear and
explicit representation of class hierarchies with inheritance of key
properties such as responsibilities (behaviour) and attributes (state
a ttr ib u te s , fixed a ttrib u te s , and changeab le a ttr ib u te s) . A
program m er or m aintainer needs to know the structure of classes,
their relations to each other and why they are introduced in the
design. Eventually, at implementation time, more detailed knowledge
about the methods and the states (variables) of objects will need to
be recorded. But a design is an abstract representation of a set of
objects being created and all their properties; some implementation

64

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

4 Conceptually-Oriented Software Engineering (COSE)

details are not expressed. Therefore, a design should be viewed as a
repository of knowledge about objects. The design process can be
viewed as an evolution of object descriptions such as adding more
inform ation and backtracking and exploring alternatives. Design
know ledge should include not only the design c lasses and
responsibilities but also the design rationale, i.e., why certain choices
were made.

[Ramesh et al. 92] explain the im portance of capturing the
design rationale: "Current practices for describing designs emphasize
the representation of outputs or artifacts that result from this process
and ignore the rationale behind their creation. There is growing
recognition that capturing and representing such process oriented
aspects of system s design w ill increase the p roductiv ity in
development and maintenance of systems". Often designers introduce
classes and methods without documenting the reason of choice or the
purpose of creating them and how they must interact with each other.

An important issue for the documentation of design knowledge
is the notion o f a form ality spectrum [Lethbridge 91]. Formal
methods provide a means for documenting design knowledge in a
form ally verifiable manner supportive o f design reuse. But many
users cannot understand formalisms.

The approach we have taken is a semi-formal approach in our
design knowledge capture with a range of freedom left to the user to
increase or decrease formality between the two boundaries: Formal
and informal representations. We try to provide a framework where
any formal description can be intimately linked and correlated with
any kind of less formal description (e.g. natural language, ClearTalk,
or finite state diagrams).

65

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

4 Conceptually-Oriented Software Engineering (COSE)

4.3 Implementation Knowledge in CO SE

In this phase, a realization of the designed system must be
achieved as executable code. Often poor implementation can create a
major problem in the maintenance phase. A program sometimes is
non-readable, non-documented or poorly documented. A m aintainer
may spend a lot of time trying to understand the implemented code
or why some code had been patched in a specific place. Even a
developer can experience d ifficu lties try ing to rem em ber or
understand the code written by himself sometime before. Flowcharts
and pseudo-code are of lim ited use especially with large developed
systems. Structured programming has been a forward step towards
program readability and comprehension; however, many believe the
ob jec t-o rien ted program m ing rep resen ts an advance over the
traditional software processing.

An object-oriented developer/m aintainer needs to get answers
to many kinds of questions:

• What is the purpose of a specific method?

• Who is the implementor of a certain method?

• W hat are the different messages sent from within a method?

• W hat are the types of the arguments of a method pattern?

• What is the expression returned by a method?

• What are the different methods that have similar names and

purposes and how do they differ from each other?

• What are the collaborative classes for a certain method?

• What are the unusual properties that can help them during the

im p lem en ta tio n ?

• What is the history of the designed method itself?

66

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

4 Conceptually-Oriented Software Engineering (COSE)

We believe that it is necessary to capture all these kinds of
knowledge in an effective software development environment. This
knowledge should be linked, where appropriate, to the design, the
domain knowledge, and the programming environm ent as well. By
consulting this knowledge, a maintainer will be able to get a more
re liab le and more accurate inform ation than if consulting the
developm ent environm ent or o ther softw are know ledge sources
including the original developers.

Our approach keeps th is kind of know ledge constan tly
accessible during all stages of the software development process. We
em phasize the im portance of such know ledge as an in teractive
assistant to the developer or the maintainer.

Im plem entation knowledge is a language-dependent, i.e . it
differs from one language to another. In our case, since we selected
Sm alltalk-80 as our im plem entation language, our im plem entation
knowledge is specifically about Sm alltalk-80 constructs (classes and
m ethods).

67

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Chapter 5

Software Development Using a
Knowledge Management System

In this chapter, the main part of the thesis, we will explain our
prototype environment COSEE, followed by an analysis of the example
that we have worked on: The ATM (Automated Teller Machine).

Our approach to confronting the software crisis is to use a
unified knowledge m anagem ent system to attem pt to capture all
knowledge involved in software development with links to the actual
p rogram m ing env ironm en t. We be lieve tha t the softw are
development environm ent should include a repository of (ideally) all
know ledge needed by both developers and m aintainers. Our
environm ent is intended to encompass the entire life cycle of a
software system from the gathering of requirements, and formulation
of specifications to the maintenance of the resulting code.

B esides being linked to the program m ing env ironm ent
(Sm alltalk-80), our environment could be linked to other subsystems
and tools:

68

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

Formal Specification
System

Documentation\A/ / v y
& Tool ^s A /

@

Knowledge

S S B V l f

Fig 5.1 COSEE Linked to Other Systems & Tools

• A CASE tool (e.g. such as ObjecTime [Selic et al. 92]) to benefit from
its software engineering capabilities as explained earlier in section
2 .2 .

• Formal specification systems (such as VDM [Jones 89] or [Boudriga

et al. 92]) to verify design-level system components.

• A docum entation tool (e.g. Fram em aker) to have a com plete
conventional documentation of the system.

6 9

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

Our model goes beyond the W aterfall Model which treats the
development of software as a linear process consisting of a series of
phases. In particular, the W aterfall Model fails to sufficiently take
into account the knowledge-intensive activities of requirements and
design analysis. As a result, the final im plem entation is often
s ig n if ic a n tly d iffe re n t from the o rig in a l the req u irem en t
specifications, and the knowledge is often distributed in various
places in incompatible, uncoordinated, or inconsistent formats. Hence,
maintainers have trouble in accessing the knowledge that might be
outdated, unorganized, or incomplete. Another major problem with
this model is the lack of design rat ionale that is rarely or poorly
captured during software development. Design rationale is currently
captured in a separate subsystem from the design docum entation
subsystem [Ramesh et al. 92]. By allowing designers to integrate
design rationale into the knowledge base in forms of statements,
design knowledge can be easily understandable and reusable.

The main features of our environment are* :

• It provides a unified medium of interaction for the development
process and assists the user who can therefore better maintain the
semantic consistency of the software system as it evolves from its
specification to its implementation.

• It provides a common environm ent for com m unication among
d ifferen t subsystem s that have d ifficu lties in provid ing an
integrated and consistent knowledge.

• It provides the same functionalities of some of existing non

integrated subsystem s (e.g. the design rationale as explained
above).

• It helps clarify natural language descriptions and specifications.

• It helps domain experts and systems personnel reach agreements
on terminological problems involved in the developed system.

• We will elaborate these points below

70

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

5.1 COSEE: Conceptually-Oriented Software Engineering
E n v i r o n m e n t

COSEE stands for Conceptually-Oriented Software Engineering
Environment. The basic idea is to extend the object-oriented model;
to extend the notion of object to something more general that we call
"Concept" (a description of all concept properties, not just behaviour
and states), hence the name Conceptually-Oriented. COSEE is our
prototype of such a system: a software developm ent environm ent
built on top of the knowledge management system CODE4 (the current
version of CODE). It is also linked to a programming environment; in
our case the Smalltalk-80 environment. In COSEE, we represent our
three d ifferen t view points of know ledge involved in softw are
d ev e lo p m en t: dom ain k n o w led g e , d e s ig n k n o w le d g e , and
implementation knowledge. These three kinds of know ledge are
stored in a single knowledge base but can be isolated. Throughout
this section, we will refer to the example we will use in the following
section (the ATM example inspired from [Wirfs-Brock et al. 90] and
[Rumbaugh et al. 91]).

Pointers among these viewpoints allow the knowledge base to
con tribu te to a unified and in tegrated softw are developm ent
environment. The user (e.g. a software developer or maintainer) can
easily browse among viewpoints. For example, if the user is in the
implementation domain studying an object called BankAccount, the
user can go all the way back to the domain knowledge where he/she
can learn more about the concept ‘bank account’ from the banker’s
point of view; this helps him/her to understand the object he/she is
working on and possibly recognize that there is a problem (e.g. the
banker said there are three kinds of account but only two seem to
have been implemented).

71

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

" vZ- ® ® ©as®>Av>>.
• • • • » » ™ « A 4

D om ain
K n o w l e d g e

D e s i g n
K n o w l e d g e

I m p l e m e n t a t i o n
Knowledge

■:CODE4 Knowledge
£Management System

X'VlEtJQBPBirQJoamfBm &
1 / / /
\ \ \ *1 / ✓ /
s v v •
x W

Sm&BBQsiDlk- ® (D

Fig 5.2 COSEE: three viewpoints linked to the
program m ing environm ent

Besides linking these three kinds of knowledge, we provide
direct links to the actual programming environment (Smalltalk-80) so
that each type of concept can be closely linked to the implementation
itself. This essentially replaces and augments what is normally found
only as code comm ents or other docum entation written separately
about the actual code itself. There are pointers that allow the user to
jum p directly from the knowledge base to the Smalltalk-80 browser
in both directions, allowing the user to understand how a concept and
its properties in the domain knowledge, a class and its behaviour in
the design knowledge, or an object and its methods are mapped into
their corresponding Smalltalk-80 classes and methods.

Based on the assumption that the conceptually/object oriented
developm ent approach will allow the com puter to be used as an

7 2

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

intelligent assistant in solving complex problems, we have developed
an environm ent that assists softw are developers to m anage their
knowledge in a manner more naturally suited to the way they think
and communicate.

Our approach is sim ilar to the Program m er's A pprentice in
re p re se n tin g th ree k inds o f so ftw are k n o w led g e : dom ain
(requirem ents) knowledge, design know ledge, and im plem entation
knowledge. It can also be considered as the result of combining
LaSSIE (conceptual and architectural knowledge) and CODE-BASE
(im plem entation know ledge). The overlap is strongest in the
recognition of the need for multiple perspectives in the knowledge
representation and multiple views to support the users’ interactions
with the knowledge.

5.1.X CODE Basic Concepts

In this section, we briefly introduce the basic concepts of CODE4
[Skuce et al. 92] to the reader who is not fam iliar with the system.
We will leave the knowledge representation features and the user
interface features to section 5.3

Concepts , Predicates, and Statements

Everything one might desire to discuss and hence represent is
termed a "thing". A concept for a thing X is a set of statements about
X, plus any statements about the statements. For example, there is
the concept "bank account"; i.e. all the knowledge CODE4 has about
bank accounts. These concepts are arranged in an is-a hierarchy in
which more specific concepts inherit properties from more general
ones. A concept with all its properties is described by a "Conceptual
Descriptor". A conceptual descriptor is like a frame; it is a data
structure consisting of a variable number of slots or statements that
consist o f facets (sm aller statem ents rep resen ting increm ental
addition to a statement) and their values. Statem ents of a certain

73

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

concept correspond to slots of a frame. Often one wants to create a
conceptual descriptor describing a property. CODE4 has facilities for
linking from a property of a concept (i.e. a single statement about it)
to another concept description which gives further details.

Things have properties that are referred to by predicates, i.e.
the notion of property is very general and is intimately associated
with those of a predicate and a statement: If one can make a
statement about a thing X, then this statement is said to express a
property of X, and for X have a property P, one must be able to
express P by some statem ent about X that uses an appropriate
predicate. For example, 'balance' is a property of a bank account and
'has-balance' would be a predicate that refers to it.

Statements have two essential parts: The subject, which refers
to a thing, and the predicate which refers to a property of that thing.
A predicate is an abstraction of a statement: it does not make a
statement, but can be thought of as a template or basis for possible
statements that can be made by adding suitable information, at least
a subject. A concept for X is described by all the statements having X
as subject, plus their com ponent statem ents, etc. A concept
(descriptor) can be as small as a single statement. For example, if we
say "ATM has the purpose of performing financial services", then
'ATM' is the subject, 'has purpose' is the predicate of the statement,
'purpose' is a property of an ‘ATM’, and 'performing financial services'
is the value of the predicate. Statements can have a range of
form ality ranging from very informal (where there is no intended
translation into more formal representation) to extremely formal (for
example, it m ight be translatable directly into a first-order logic,
Prolog or some other formal language). One of the deliberate design
goals in CODE4 is to provide this flexibility where one statement
might be inform al (like a comment about something) and another
statement might be formal (like logical constraint expressed in formal
language). Thus, a CODE4 user can encode knowledge with varying
degree of form ality. The more the degree of form ality, the more
inferences can be done autom atically. Like in most, if not all,

7 4

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

knowledge representation systems, CODE4 can make hierarchical
conceptual descriptions based on the notion of inheriting properties.

H ierarch ica l S tru c tu res

Two hierarchical structures are central to CODE4: The is-a
hierarchy (concept hierarchy) which represen ts the abstrac tion
relationships between concepts, and the predicate hierarchy which
allow s the arrangem ent of p red icates and hence sta tem ents
hierarchically. We explain these further:

The subjects of all statem ents, and hence all
concepts, are located in an inheritance (or “is -a ”)
hierarchy or “Concept H ierarchy” that permits multiple
inheritance of statements. The purpose of this hierarchy
is conventional: to perm it taxonom ic structuring of
knowledge and property inheritance. A (subject) node
referring to a thing may be created in the hierarchy
without actually making any statements about it, except
to identify its parents in the hierarchy. But as soon we
make statem ents about a thing, these form its concept
d escrip to r.

The other h ierarchical struc tu re is term ed the
“Predicate H ie ra rch y" . All predicates are arranged in a
separate h ierarchy in w hich the p a rtia l o rder is
interpreted as "implies". The "top" of the predicate
hierarchy is a predicate meaning "has a property". Each
predicate is represented as a CODE4 object (a thing) which
is an instance of the prim itive concept ’predicate', from
which it inherits properties that predicates have. We can
also refer to this hierarchy as an "implication hierarchy"
meaning that if P2 is a subproperty of P I , then the
statement of P2 about a subject S (a concept) implies the
statement of PI about S. The “Statement H ierarchy” is the
direct result of the predicate hierarchy. For example, if we

7 5

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

say that "making a deposit" is a subproperty of "an action
on ATM", then the statement of "making a deposit" about
ATM implies the statement of "action on ATM" about
ATM, i.e. there are actions on ATM.

The concept h ierarchy , predicate h ierarchy , or statem ent
hierarchy can be displayed in outline or graphical nodes (see, e.g., Fig
5.7 or Fig 5.8). The outline hierarchy displays concepts, properties, or
statem ents with indentation to show the hierarchical relationships
among them (children or sibling relationships). The graphical
hierarchy displays the concepts, properties, or statements as nodes
with links among them highlighting their relationships.

5 .1.2 R ep resen tin g K now ledge in C O SEE

In this section, we discuss how we use COSEE to represent the
differen t kinds of know ledge needed for softw are developm ent:
dom ain know ledge, d esign know ledge, and im p lem en ta tion
know ledge.

5.1.2.1 Domain Knowledge

Domain knowledge is stored in CODE4 conceptual descriptors
that contain knowledge in the form of statements about the domain
concepts. All concepts deemed to be important in the domain are
described by the domain expert or the systems analyst. Often they
are first described in an informal way, but COSEE can make this
knowledge much more precise.

Concepts in the domain knowledge base are not restricted to
po ten tial candidate object-oriented classes but rather they can
include any concept regardless of whether or not it is relevant to the
system design. It w ill usually not be known until later which
concepts will become design object classes. The person building the

76

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

knowledge base has to decide how much knowledge to encode.
Knowledge might be irrelevant to the current task but may be useful
to another subsequent task and often in the beginning of a project, it
is not possible to tell which knowledge will be needed; so the systems
analyst may collect a lot more knowledge than is needed. These
concepts, once captured in the knowledge base, must be accepted by
the domain expert. Systems analysts and domain experts must work
together towards an agreement on a unified knowledge base; CODE4
serves as a medium of com m unication betw een them . O ther
knowledge that is relevant to the development process itse lf could
also be captured in the knowledge base; e.g. historical knowledge (like
the names of the people involved in the analysis, time, location,....)
and general comments.

Concept properties (i.e. statem ents about concepts) include
anything a domain expert wants to say about a concept and are not
restricted to any particular kind such as the actions performed by the
concept or its attributes. Major kinds of properties include:
• P u rp o s e : The purpose of the thing itself.

. R elated T hings: The things related to the thing being described.

. P a r ts : The different parts that compose the thing.

. S tates: The different states that the thing can be in.

Later on, we will illustrate more domain concept properties
when we discuss the ATM example.

These properties can be very general or very specific. They can
be very general to help other domain experts agree or disagree on
their correctness, to help other team developers understand these
concepts w ithout any am biguity, to reduce the tim e m aintainers
spend to understand the system , and to rem ove the possibility of
errors am ong people involved in the softw are developm ent in
general. Or they can be very specific to specify some details that are
essential for the developers to design a reliable and accurate system.

77

Reproduced with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

Properties can be treated as concepts, i.e. a domain expert can
describe these properties in more detail. This can be done when it is
felt that a property is not sufficiently clear, i.e. to represent
additional information that we want to associate with a property in
general or a particular statement.

Capturing all the domain concepts in a knowledge base ensures
that the system s designer w ill have more freedom and more
knowledge in designing a reliable and a flexible system that can be
easily extended in the future.

A fter the dom ain know ledge has been captured in the
knowledge base, the next step is the identification of potential objects
for the design phase, using any Object-Oriented analysis technique
(we do not focus on any particular technique). Flags attached to
concepts tha t are considered as poten tial ob jec ts can help
differentiate between those from other domain concepts. This step
can be a product of the collaboration of systems analyst and systems
designer.

5.1,2.2 Design Knowledge

By design know ledge, we m ean general system s design
knowledge w ithout any notion of im plem entation details. This
knowledge could be reused for other designs. Since our approach is
an abstraction of the object-oriented approach, we will assume that
the design will be object-oriented design. But we wish to emphasize
that any design methodology could be used; not only object-oriented.
This design knowledge will specify classes of objects together with
their properties such as attributes, behaviours, and states. Design
objects are represented in an is-a hierarchy with the Object class at
the top as usual.

Pointers in the domain knowledge help clarify the mappings
from domain concepts to design objects. A pointer is attached to

78

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

every domain concept which has a corresponding object in the design
knowledge, and vice versa.

Not only will object structure, responsibilities (behaviour) and
attributes be recorded in the design knowledge base but also other
types of design knowledge such as design rationale can be recorded.
The basic idea is to record answers to questions that new designers,
programmers and maintainers will frequently ask, such as:

• What is the purpose of creating a specific class?

• Why has a certain concept been treated as a class and not some
other way?

• What are the different services provided by a class and what are

those inherited by that class?

• What is the difference between two (or more) methods with the
same name but implemented by different classes?

• Why has a service provided by a system been treated as a class
and not as a behaviour in the design?

• What are the composite classes that compose a certain class?

• Why is a class designed as a subclass of another class even though
it is not conceptually correct?

• How and why have decisions regarding a specific design been
m ade?

• How do different classes comm unicate and w hat are the
different messages sent from one class to other classes in order to
implement a certain method?

• What are the different states of a certain class and how are they
represented in the system?

Besides the above mentioned knowledge, system personnel may
need to know other related technical information (class category, class
comments, ...). Other historical knowledge (the designer names, the

7 9

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

tim e, ...) and any general comments could be recorded in the
knowledge base.

Thus, design know ledge m ainly contains knowledge about
classes, their structures, and their behaviour that is divided into
responsib ilities and collaborations, their states, design rationale
statem ents, and any other relevant knowledge necessary to the
systems designer, the programmer, or the maintainer.

5.1 .2 .3 Im p lem en tat ion Knowledge

Im p le m e n ta tio n k n o w led g e is know ledge abou t the
implementation of the software; i.e. the actual code. It is mainly
intended to capture details of a particular implementation to assist in
a consistent and accurate program m ing, which in turn assists in
system m aintenance.

A lthough w e used the S m allta lk -80 language as our
im plem entation language, our ob ject-orien ted design could be
im plem ented in any other object-oriented language. Knowledge
about Sm alltalk-80 classes and methods is derived from the design
captured in the knowledge base. This knowledge includes knowledge
about the message pattern, the type of arguments, the value returned
when a m essage is sent, the different messages sent and their
receivers from within a method, method comments and purposes, the
instance and class variables, and the instance and class methods. The
goal is to provide most of the knowledge the programmer normally
looks for in the Smalltalk-80 browser directly within COSEE. The only
thing the programmer would need to go to the Smalltalk-80 browser
for is to study some details of the actual code or to edit it. All other
knowledge should be available in COSEE.

Pointers exist between a class (or a method) in the design
know ledge and a class (or a m ethod) in the im plem entation
knowledge to help clarify the link between a designed and an

80

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

implemented class (or a method). These pointers show how classes
(or methods) are implemented once they have been designed. By
following the links between the viewpoints, a programmer can easily
trace the ideas behind a piece of code all the way back to the domain
knowledge if needed.

Further pointers link the im plem entation knowledge base in
CODE4 and the Smalltalk-80 browser to assist in ensuring that the
implem ented code m atches the im plem entation knowledge and to
help find actual code. This link provides an integrated view between
the knowledge about the developed software and the developm ent
environment (this will be illustrated in section 5.2). Also, COSEE can
assist program m ers in reverse eng ineering as fo llow s: The
program m er can select a class concept in the im plem entation
knowledge and ask COSEE to autom atically generate, in the same
im p lem en ta tio n k n o w le d g e , a su b h ie ra rc h y o f su b c la sse s
corresponding to one in the Smalltalk-80. COSEE will find the
Smalltalk-80 class that corresponds to that concept, if it exists, and
create a subhierarchy consisting of its subclasses with their methods
and variables (instance and class variables). The program m er can
also ask COSEE to generate only one of the subclasses of the Smalltalk-
80 class corresponding to this concept. This is done by allowing the
user to select a subclass from a pop up window consisting of all the
concept subclasses, i f there ex ists a Sm alltalk-80 class (w ith
subclasses) corresponding to the selected concept.

5.2 T he ATM E xam ple

In this section, we illustrate our approach using the ATM
(Autom ated Teller M achine) exam ple ([Rum baugh et al. 91] and
[Wirfs-Brock et al. 90]). We demonstrate how COSEE can be used as a
software development assistant, i.e. as a source of knowledge needed
during software development.

81

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

Special
Keypad Normal Keypad

Display
Screen

Cash Dispenser
Receipt Printer/v

Deposit Drawer
Bank Card Reader

Fig 5.3 The ATM Structure

The knowledge in this example, about the ATM (Automated
Teller Machine), is driven by the application domain, i.e. banking.

The ATM example illustrates our COSEE approach as follows:

• The dom ain know ledge is independent of any design and

implementation, i.e. it is knowledge bankers can understand. We
have only included knowledge relevant to the ATM.

• The design knowledge is independent of any implementation, i.e. it
could be used for various implementations. However, it is built
upon the knowledge required on the domain knowledge, and upon
previous design components that are being reused.

• The implem entation knowledge describes a particular
im plem entation, i.e. it is language dependent (in this case
S m alltalk -80).

For example, the concept of an account balance in the domain
knowledge is captured as a concept understandable to bankers. In
the design knowledge, it maps into the attribute “balance” of the

82

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

Account class. This in turn maps into an implementation in the case
of Smalltalk-80 as an instance variable “balance” of the Account class.
Hence from the domain, one can follow through to find out what
happens to the idea of account balance once it is finally implemented;
in th is case it becomes an instance variable. C onversely, a
program m er or a maintainer, if having difficulty understanding the
idea behind the “balance” instance variable, could trace it back and
understand how it fits into the domain knowledge, i.e. it corresponds
to a bank account balance. Obviously in this simple example, there
might not be much difficulty making this conclusion, but in much
more complicated examples, where the domain is not fam iliar to the
designers or implementors, making such inferences would be difficult
or almost impossible. Thus system developers and m aintainers can
not only view the idea of a balance im plem ented in ST-80
environment but can look at it, at the same time, from the three COSE
viewpoints as well. By having COSEE browsers (Domain knowledge,
Design knowledge, and Implementation knowledge browsers) and ST-
80 browser open at the same time, the user can select the desired
concept (balance) in any browser and, by following the pointers, the
corresponding concept will be selected autom atically in the three
other browsers (this what we call a "dynamic link") as shown in the
following figure:

83

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

U M B i n i l i t w r t t H e 111
H ll.g

•j bank account ■ balance.

thing
• bank thing

• barkcvd
• personal Idartiicsdoti numb
•ATM customer

• b v k s n in g K c a r t
•bank checking acco u t

■ envelope
•balance
• ATM thing

•ATM entity
•ATM
•ATM transaction

• ATM depost transact!
•ATMvlhrkwrtransac
• ATM transfer transact^.

properties:
• purpose: holds the money owr
• r a te d things:

• r a te d entities:
■ earner an ATM customer

• r a te d actions:
•puts:
• actions:

• actions on:
•openedby:oneOf(anAT
•dosedby.oneOf(anATT

• tefcu ttx

• lumber a s k char number

itet no
Account, 13 balance.

< h n » t i . a «- «*«

thing
• 0 0 Design thing

• 0 0 class
• Object

•ATMControkf
•Transaction

•DepestTransactioo
■WIthdrwTransactlor
•TransterTransaction
•Baiancelnqiiy

•Number
■Penonalldericalxx

-m m m m
■Device

• InputDevice
•BmkCarifieader
•DeposltDrawr

properties:
• purpose: I is considered the top d ass d a dr
• r a te d things: a set of thhgs

• r a te d entities:
• r a te d actions:

• OOD Properties a set ot properties that I ha:
• description: # contains behaviour and s t e
•responsUties:
•prying

• querying about s ta te * s t e afiriwtes

•eompamg:
**an object n t

•accept deposits:

'the balance

I HIM Inpleam lallin kiwvttJge I

3 Account 3 balance.

thing
• STthing

•SITClass
•Object

•Transaction
• DeposKTransadion
• WMawTransactisn
■TransferTrans action
■ InquiryTransadion

• A T M C o n t r a f e f ^
-£83MNNIIN

■ ST Method
•craateTransadon

•craateTransaction
■ rSsplayGreetingMessage

•dsplayGreedngMessagi
• displayMainMenu

• dsplayMalnMenu

Q o t t l B *-

• CATEGORY: ATM-objects
• COMMENT: represents a Bar
•METHODS:

• INSTANCE METHODS:,
•vdhdravfog

•Mththw-anAmourt dei
•transfering:

•transfa-anAmountfam
•deposthg:

•deposl-anAmounelncr
•queryng

‘m ii wrjMii
• CLASS METHODS:.

• instance cnabonc
• create: 'anAceount

• VARIABLES:.
• INSTANCE VARIABLES:.

< balance; <aRxEiffointflun
*nt ijdq

» iAltiehalance_

7._____________________1

: AP-ParslngExarr j
AP-SystemAnaty!
AP-Terminals 1
AP-Support
System-Printing
CODEA-KPreotoc

- - i 1

ATMControkr
Transaction

J ’
uAhdraurfng
transfering
d e p o s j t in g ^ ^

cmrmtrting

■Hnstance>dass V

. — i
balance

'returns the Instance variable balance'
*
balance

Fig 5.4 COSEE browsers: four browsers are dynamically linked.
A selection ‘bank account’ in the domain knowledge

drives selections in the other three browsers

84

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

5.2.1 ATM Domain Knowledge

In this section, wc describe how we encode the ATM domain
knowledge in COSEE. We discuss generic domain and application-
specific concepts, the concept and property hierarchy, and our
analysis methodology.

5.2.1.1 Generic Domain vs. Applicat ion-Specific Concepts

In analyzing the application domain of the ATM, we begin by
trying to capture all necessary banking concepts in a knowledge base.
A key point is that we define all the necessary concepts only in terms
that a banker can understand, such as the bank card, the personal
identification number, the bank account, the account balance, the
ATM m achine, the ATM transaction menu, the different types of
transactions, and the different ATM parts. I f there was previous
banking knowledge (from an earlier project), hopefully some of it
could be reused. The domain knowledge concepts can be categorized
in to generic (ap p lica tio n -in d ep en d en t) and ap p lica tio n -sp ec ific
concepts, in this case the ATM described from the bankers point of
view. We distinguish between these two kinds of domain concepts by
tagging generic domain concepts (i.e. banking concepts) with two
asterisks (**) as shown in the figure, i.e., these exist independently of
ATM concepts. __

M «o<* 11.11 — •> h o r t, t l . B «*»>•<
□a

S t b a n k c a r d **_ c o r r e s p o n d s to .

1 • t h i n g ■ p r o p e r t i e s :
1 . b a n k t h i n g • o w n e r . A T M c u s t o m e r

- I s s u e d a t e :
. p e r s o n a l I d e n t i f i c a t i o n n u m b e r • e x p i r y d a t e :
• A T M c u s t o m e r
• b a n k a c c o u n t — . p u r p o s e : t o b e u s e d b y m A T M C u s t n ' r

• b a n k s a v i n g a c c o u n t — • r e l a t e d t h i n g s ;
* b a n k c h e c k i n g a c c o u n t — * r e l a t e d e n t i t l e s :

- e n v e l o p e - r e l a t e d a c t i o n s :
• b a l a n c e * * * p a n s :
- A T M t h i n g . b a n k n a m e :

• A T M e n t i t y • s e r i a l n u m b e r , a s e q u e n c e o f 1 o t o :
• A T M • c u s t o m e r n a m e :
• A T M t r a n s a c t i o n • a t t r i b u t e s ;

• A T M d e p o s i t t r a n s a c t i o n
. A T M w i th d r a w t r a n s a c t i o n
• A T M t r a n s f e r t r a n s a c t i o n
. A T M I n q u i r y b a l a n c e t r a n s a c t ! • e t * - * *

> A T M t r a n s a c t i o n m e n u
• A T M Vo d e v i c e | ^ b a n k a c c o u n t * *

a

Fig 5.5 ATM Generic & Application-Specific Concepts

85

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

5.2 .1 .2 D om ain C oncep t H ie ra rc h y

We cannot describe all the domain concepts (or their properties)
here; that is the purpose of the knowledge base. Basically, there are
several important top-level concepts, which COSEE can easily display
as in the following figure:

. — — ■ ATM Domnin Knmnlprfnp (?) • ■ ■ ~ ~— - ■ -- - - - - - - “ H
il tarty II,t2 al honfr tl .12 ♦ - jfcto

H m transferring money between accounts.
VA

•thing
• bank thing

• ATM thing
• ATM entity

•m w n m m m k
• ATM transaction

• properties: a se t of thing
• actions:

• actions by:
• performing financial transactions:

• depositing: ATM deposit transaction
• withdrawing: ATM withdraw transaction

• ATM i/o device
• ATM controller . • inquiry about balance: ATM inquiry transaction

• ATM state ;, + E n d -k W c

• ATM action !
• action by ATM

J • action on ATM«! ,

■ / J M transfer transaction

4

0

Fig 5.6 ATM Domain Knowledge - Top Level Concepts

We describe some of them briefly:

• B ank th ing : any concept related to the banking domain or the
application specific; i.e. that is not specifically described for the
application only (such as bank card, bank account, and balance).

• ATM th in g : any concept related to the application to be
developed (such as ATM Controller, ATM state, and ATM action).

• ATM ac tio n : any action performed by (such as display, prompt,
eject) or on (such as query) the ATM.

86

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

The follow ing figure shows the com plete hierarchy of banking
concepts:

M hor* 11.12 *- *h o«*tI.tf ♦ '

[i
ll 1 purpose.

= • thing — -----------------

• bank thing • properties;
• bank card
• bank account • ATM properties:
• baiancs • actions;
• ATM thing • actions on;

• ATM entity • querying:
• queries the BankCardRefiden

• ATM transaction • an authorized Card Is In the BankCardRea
• ATM I/o device • actions by.

• input device • a c ce p t allOf (Bank Card, E nvelope)
• keypad • prompting the customer.
* deposit drawer • displaying;
• bank card reader • displaying m essages;
•k e y • displaying transaction menu;

• output device • performing financial transactions:
• ca sh dispenser • depositing: ATM deposit transaction
• receipt printer • withdrawing; ATM withdraw transaction
• display screen • transferring money between accounts: ATM

• ATM controller • inquiring about balance: ATM Inquiry transa 1

• ATM state • states;
• ATM dynamic state • dynamic states:

• reading card • validating card;
• ejecting card • processing transaction:
• keeping card • static states:
• validating custom er authority • ready

• ATM static state • parts:
• idle • Input D evices:
• ready • Deposit Drawer
• off • Keypad: keypad

• ATM action • Normal Keypad:
• action by ATM • Integer Keys:

• display • Decimal Point K ey
•display a m essa g e • Special Keypad;

• display a greeting m essa g e • Function Keys:
• eject • Cancel K ey
• validate • Output D evices:

• validate a custom er account • Display Screen:
• action on ATM

• insert „ +End «delg

• Insert a card fj allows the custom ers to perform ATM Transactions

- • query a balance 1
V

1 2

Fig 5.7 ATM Domain Knowledge - all concepts, w ith
properties of ATM shown

87

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

5 .2 .1 .3 D om ain P ro p e r ty H ie ra rc h y

B esides capturing banking concepts and p roblem -specific
concepts in COSEE in a conceptual hierarchy, we can also describe
some of their im portant and com plex properties. Some of the
properties of some concepts are themselves sufficiently complex that
they ought to be treated as concepts themselves. For example, we
listed, under the ATM, the actions and states as properties. However,
we treat them also as concepts in themselves; a link in COSEE allows
one to jum p from a property such as "transferring money between
accounts" to the associated concept that describes it in more detail.
Two of the most important concepts that have to be understood in
order to understand an application domain are the states and the
actions, jointly called behaviour.

Like any concept, a banking concept is described by key
properties, such as: purpose, related things, parts, behaviour. We
describe these key properties in more detail:

• P u r p o s e : W hat is the purpose of the concept, including its
functionality in the system? For exam ple, the purpose of the
"Personal Identification Number" is “to identify the ATM user” and
“provide a way for the ATM to check the authority of the user to
access the system and perform financial transactions” . Purposes
are given by a short phrase using a simple verb.

• R elated th ings: W hat are the different things that are closely

related to a certain concept? For example, the two most closely
related things for the bank card are the ATM customer and the
bank card reader, i.e. to understand a bank card, you m ust
understand these two concepts. The related things for a bank
account are the personal identification num ber and the ATM
cu sto m er

• P a r ts : What are the different parts of a banking concept (if any)?
For example, the ATM has ATM Controller, Input Devices, and
Output Devices. Input Devices consist of the Bank Card Reader, the

88

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

Deposit Drawer, and the Keypad. Output Devices consist of the
Cash Dispenser, the Display Screen, and the Receipt Printer.

Using CODE’S graphic capabilities, a part-of graph can be
generated from the ATM dom ain concepts. By describing the
different parts o f the ATM, the bankers or the systems personnel
(especially the designers) can benefit from a diagram showing the
relationships between different components of the ATM:

ATM lU hole-P art Diagram
all vert hor t1.t2 ♦ -

“j bank card reader.

.^ d e p o s it drawer!

^ Jrtpul device

utput device

ĉancel key |

[function key]

~~*4dedmal point kevl

integer key I

cash dispenser |

Ireceipt printer I

bplay screen!

[numeric Keypad]

bpeclal keypadl

2l_

Fig 5.8 ATM Whole-Part Diagram

89

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

• B e h a v i o u r :

The behaviour is perhaps the m ost im portant property o f a
concept, at least for those that “have” a behaviour. It is usually the
most difficult to describe and understand. From the domain point of
view, the behaviour of an ATM can be described by states and actions
in a simple finite state diagram, again, understandable to a banker.
However, the designer will work from it and will add considerable
details at the design phase, mostly corresponding to parts o f the
system that the bankers are unaware of.

Next, we describe the ATM states and then the actions performed on
and by the ATM:

S t a t e s :
We have come to the conclusion that the notion of

state is quite complex and needs considerable analysis.
For example, one major categorization we have detected is
the difference between what we term dynamic and static
states. By dynamic state, we mean a state in which the
ATM remains while performing an activity or an action.
By static state, we mean the state in which the ATM
remains inactive waiting for an event to occur. A dynamic
state is characterized by having an answer to the question
’’what is happening in the state?", whereas a static state is
characterized by having the answ er "nothing" to this
question. For example, the ATM Controller can be in a
dynam ic state like com pleting transactions, validating
ATM User authority, checking the User Account, etc. Or it
can be in a static state like being idle, off, or ready for
perform ing any transaction or accep ting any user
response. Using CODE4 graphics capabilities, we can draw
the following ATM finite state machine diagram that we
constructed following [Rumbaugh et al. 91] methodology:

9 0

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

J T H f ln U i fllig fi

ATM

C M
turn-erf

Account

'tron iad lon to bilng cw w rtltd

Fig 5.9 ATM Finite State Diagram: states are represented
in rectangles while events appear on the links

between them

In describ ing the ATM states, we d ifferen tiate
between dynamic and static states. For each, we specify
the state change event; what are the different events that
change a specific state and what are its successor states.
A finite state diagram shows the different ATM states and
gives a good picture of the behaviour of the system that
the banker can understand. Nerson [Nerson 92] explains
the im portance of the dynamic model: "The dynamic
model consists o f scenarios dem onstrating significant
object communication protocols. The purpose is twofold: it
helps to validate the static model and to make sure
objects are reachable from others; it maps the system

91

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

behaviour better as opposed to the static model that only
reflects the structure". We could differentiate between
dynamic and static states of the ATM by drawing them
using different shapes (a feature that should be added to
CODE4).

We now describe the events of the states by
categorizing them into:

• In c o m in g E v e n ts : W hat are the input events to a
state? For example, an incoming event for the ATM
state “reading card” is “insert card”.

• O u tgo ing E ven ts: What are the output events from
a state? For example, the outgoing events from the
ATM state “reading card” are “able to read card” and
“unable to read card”.

» rf her* t1.t2 ♦- *hi d ho* tl.Q ♦- ifchi
1

£| validating customer authority. il ATM Customer enters right PIN.
V . . >_____ — .« _______

• ATM state
• ATM dynamic state

• reading card
• ejecting card
• keeping card

> validating customer account
• gathering ATM transaction Information
• processing transaction
• checking transaction status
• completing transaction
• printing receipt

• ATM static state
• t fe
• ready
• of

*

.

■ properties;
• purpose: Involved In a financial - related action
• events; an ATM state

• Incoming events;
♦ outgoing events:

♦ ATM Customer enters wong PIN; keeping ca

•End «Mo
validating customer account

t

Fig 5.10 ATM states

9 2

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

A c t io n s :

By actions, we mean the different actions performed
e ither on or by a thing. For exam ple, the Actions
performed On the ATM Controller include ‘querying’; the
ATM user queries the Controller about his/her account
balance. The Actions performed By the ATM Controller
include ‘displaying’; the ATM Controller displays messages
(lik e g re e tin g , in se r tin g -c a rd , and rem o v in g -card
messages) to the ATM user. In describing the actions
performed on and by the ATM, we specify the following
p ro p erties :

ILJkMHittEUJUIUaMaIL>Jaii>iJLM__a53 RTM Rctioni ^ S ^ S 5 3 S E S ^ 5 E S 2 ^ ^ ^ B S E S E l l l
•» ai hor* tl.12 ♦- atoha „ W ton* tl .12 atota
3 display a greeting message. ; purpose^

- • ATM action ---------------------
• action by ATM • properties;

• display • agent ATM
• display a message • patient display screen

•1 lB 0 9 6 C ® l# B I8 S e e 6 g 6 l* * recipient ATM customer
• display a card-removing messa * cause: whenever ATM Is Idle

• display a prompt
• display an ATM transaction menu . preconditions: ATM Is Idle

• eject > related things:
• eject a Card > thing displayed; a message
• eject a receipt
• eject cash

• commit an ATM transaction
• transferring money between aceou

• validate
• validate a bank card
■ validate a personal Identification n
• validate a customer account

• read an ATM customer card serial r
• prompt

• prompt for a personal Identification
• prompt to specify a bank account
• prompt to specify an amount

• keep a bank card
• reset the cancel key

♦End •MWa
Jnvlte user to Insert a bank card

■ action on ATM
• Insert

• Insert a card
• Insert an envelope

- enter transaction Information
; • query a balance

s

Fig 5.11 ATM Actions

93

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

• Purpose: What is the purpose of performing a certain action and
what is its effect on the ATM in general? For example, the purpose
of ‘displaying a greeting message’ is ‘invite user to insert a bank
card’.

• A g e n t: Who is the agent of the action? (Who or what does it) For
example, the agent of ‘displaying messages’ is the ATM Controller.

• P a tien t: Who or what is the patient (i.e. is affected by) of the
action? The Display Screen is the patient of ‘displaying messages’.

• R e c ip ie n t: Who is the recipient of the action? The ATM User is
the recipient of ‘displaying messages’.

« Cause: What is the cause of a certain action? The ATM Controller
asks the Bank Card Reader to keep the Bank Card because the ATM
User fails to enter the right personal identification number.

• P re -c o n d it io n : What is (are) the pre-condition(s) in performing a

certain action? Before the ATM User inserts a Bank Card in the
Bank Card Reader, the ATM Controller must displays a greeting
message inviting the ATM User to insert a card and the Bank Card
Reader must have a space for the new card.

• C o n s tra in ts : W hat are the constraints on the action that is to be

perform ed? For exam ple, the ATM U ser cannot withdraw or
deposit more than a certain amount each day.

• R e la ted e n titie s : What are the entities related to performing a
certain action? A rela ted entity to en tering the ‘personal
identification number’ is the User Account.

• R e la ted a c tio n s : W hat are the actions related to perform ing a
certain action? A related action to the action of ‘completing a
certain transaction’ is to ask the ATM User if other transactions are
needed to be performed.

9 4

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

A n a ly s is M e th o d o lo g y

Improving analysis was not our objective; we relied heavily on
[Rumbaugh et al. 91] and [Wirfs-Brock et al. 90]. We started by
describing banking concepts in natural language, using COSEE as a
blackboard for rapidly capturing ideas that would arise during
discussions with the domain expert in a knowledge base regardless of
their formality and their sequence. We augmented what we found in
[Rumbaugh et al. 91] and [W irfs-Brock et al. 90] with our own
knowledge about banks and ATMs. Another way of capturing these
in itial concepts in the knowledge base would be from existing
documents (CODE4 has a facility, under development, for reading
docum ents and extracting concepts from them). Specific system
requirem ents are identified in the knowledge base as concepts and
properties; the analyst can attach flags to them in CODE4. For
exam ple, interview questions prepared by the analyst might be
stored in the knowledge base until the domain expert answers. When
the analyst w ishes, the knowledge base can be presented to the
domain expert to check and validate its contents.

The analyst could benefit from the predefined ontology
available in CODE4 which presents a taxonomy of generic high level
concepts with their generic properties. Our methodology benefited
from the ontology, just as the Smalltalk-80 programmer benefits from
the built-in classes. This ontology plays an important role in getting
the domain experts and the developer team to agree on common
term inology. Also, systems analysts can more easily reuse another
knowledge base (or part of it) that describes the same (or similar)
domain knowledge if it has the same top level ontology. This
knowledge base can be loaded in memory and the systems analyst
can copy and paste the required knowledge between knowledge
bases. The top-level ontology describes very generic concepts like
state, action, activity, event, process, etc. in a unified manner so that
everyone can be in agreement on the meaning of these terms. For
exam ple, an ATM state can inherit generic properties from the
descrip tion o f the state and the system s analyst adds specific

95

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

properties (like those previously discussed) to it.

thing

actionstate entity

s t a t i c
s ta t edynamic

s ta te actions on actions by

ATM thing

ATM actionATM state
ATM entity

ATM static
s ta t eATM dynamic

s ta t e
action by ATMaction on ATM

Fig 5.12 Relation of ATM Concepts to
Default Ontology in CODE4

The next step to narrow the gap between the analysis and the
design phases is done by the systems analyst by identifying an initial
list of domain objects. This is done by flagging candidate concepts in
the knowledge base and by highlighting the system requirem ents in
terms of concepts and properties. For example, the analyst could flag
such concepts as: The ATM, the account, the personal identification
number, the input and output devices and flag such requirem ents as
deposit, withdrawal, transfer, and balance inquiry. To differentiate
between system concepts and system requirements, the analyst could
use different notations.

9 6

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

5.2.2 ATM D esign Know ledge

Starting from a set of selected domain concepts (potential
object-oriented classes), the systems designer can begin to determine
the candidate classes in the knowledge base in an object-oriented
hierarchy under the concept " 0 0 design thing”. Since we are using an
object-oriented approach in our design, the hierarchy contains two
main subhierarchies: One corresponds to classes (under the concept
" 0 0 Class") and the other corresponds to class behaviour (under the
concept " 0 0 Behaviour"), which will be implemented by methods.

0 0 C lass S u b h ie ra rc h y :

Under the " 0 0 Class" subhierarchy, the designer specifies the
different ATM classes with their purposes, their descriptions, their
states, their behaviours, and their design rationale. For example, the
Transaction class would be described with the following properties:

• m r w w i i . t a * - w m | « ----- M h o r * n . u * -
3 T r a n s a c t i o n . 1 3 d e s l o n r a t i o n a l e .

“ • t h i n g
- D O O e s l g n t h i n g • p r o p e r t i e s :

. O O c l a s s . p u r p o s e : t o p e r f o r m t r a n s a c t i o n s
• O b j e c t . r e l a t e d t h i n g s :

• A T M C o n t r o l t e r . r e l a t e d e n t i t l e s : A c c o u n t . A m o u n t , A g e n t , D a t e
• r e l a t e d a c t i o n s : p r o m p t i n g , d i s p l a y i n g

* D e p o s t t T r a n s a c t l o n - O O D P r o p e r t i e s : ,
• W i t h d r a w / T r a n s a c t i o n . d e s c r i p t i o n : T h i s c l a s s d e f i n e s t h e b e h a v i o u r c o m m o r
* T r a n s f e r T r a n s a e t l o n • r e s p o n s i b i l i t i e s :
. B a l a n c e I n q u i r y . e x e c u t i n g :

• N u m b e r . e x e c u t e - a t r a n s a c t i o n : - t r a n s a c t i o n e x e c u t e d
. P e r s o n a l l d e n t l f l e a t i o n N u m b i . g e t t i n g I n f o r m a t io n :

• A c c o u n t . g e t - a c c o u n C
* D e v i c e . g e t - a m o u n c

- I n p u t D a v l c e . q u e r y i n g ;
■ B a n k C a r d R e a d e r . q u e r y i n g a b o u t s t a t e : - s t a t e a t t r i b u t e s
• D e p o s t t O r a w e r . c o m p a r i n g :
• K e y p a d . » a n o b j e c t : ~ b o o l e a n

• O u t p u t D e v l c e > a t t r i b u t e s :
■ C a s H D I s p e n s e r . s t a t e a t t r i b u t e s :
• D l s p l a y S c r e e n . f i x e d a t t r i b u t e s :
• R a c a l p t P r f n t a r . c h a n g e a b l e a t t r i b u t e s :

» « e n a l
* F o r m s e r v i c e I s r e p r e s e n t e d a s a n o b j e c t b e c a u s e It I s n a t u r a l
• U s e r M e s s a g e t o fo r m s u b c l a s s e s k

* U a e r R e s p o n e e

IQ

Fig 5.13 ATM Design Knowledge - 0 0 Classes

97

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

• P u rp o s e : To allow the ATM User to perform a certain financial

transaction .

• D e s c r ip t i o n : Class Transaction defines the structure, related
things, behaviour, etc. common to all requests from a bank
customer to perform a financial transaction.

• R e s p o n s ib i l i t i e s : The responsibilities (behaviour) of the
Transaction class can be grouped into: Executing and Private.
Executing includes "execute a financial transaction". Private
includes those private responsibilities for the class like prompting
for an account or an amount, and committing the transaction to the
da tab ase .

• A ttr ib u te s : The attributes can be divided into state attributes
(which define the state of the object), fixed attributes (attributes
that cannot be changed), and changeable attributes (attributes that
can be changed but are not ‘state’). For example, a transaction can
be in one o f the follow ing states: com pleted, uncompleted,
canceled, waiting, or suspended. It also has a fixed attribute such
as the account and a changeable attribute such as the agent of the
tran sac tion .

• Design R ationale : The designer explains why a service like the
transaction has been treated as a class and not as a behaviour of
another class: To form subclasses (the d ifferen t kinds of
transaction) from the class Transaction. And why this class is
designed to be a subclass of the Object class: The actual superclass
will be left until the implementation phase; since it is dependent
on the built-in classes o f the language (here, the Sm alltalk-80
language).

O O B e h av io u r S u b h ie ra rc h y :

Under the "OO Behaviour" subhierarchy, we encode the different
behaviours of the ATM system as concepts and attach properties to

98

R e p ro d u c e d with p e rm iss ion of th e copyright owner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

them in order to help the programmer in its coding and to facilitate
the building of our implementation knowledge. The key properties
attached to each behaviour are:

. I f tO T* l i . t t t f r w n f r - t l .1 2 — M M I
m

H c o m m e n t

• t h i n g
• O O D e s i g n t h i n g

• O O B e h a v i o u r

• p r o p e r t i e s :
• p u r p o s e : p r e p a r e f o r a n e w f i n a n c i a l t r a n s a c d o
. r e l a t e d t h i n g s : I n i t ia l i z e t h e t r a n s a c t i o n
> O O D P r o p e r t i e s : a s e t o f p r o p e r t i e s r e l a t e d t o t

> I m p l e m e n t o r A c c o u n t c l a s s
* p r o t o c o l : c r e a t i n g

. c o l l a b o r a t i o n s : .
• c r e a t e : [T r a n s a c t i o n]
- I n i t i a t e s : [A c c o u n t c l a a e]

* r e t u n e d o b j e c t a t r a n s a c t i o n
* d e s i g n r a t i o n a l e : .

• e x e c u t e a f i n a n c i a l t r a n s a c t i o n
« d i s p l a y g r e e t i n g m e s s a g e
• d i s p l a y m a i n m e n u
• p r o m p t a c c o u n t o f -
• r e a d b a n k c a r d

•E n S »•*«
j h l s b e h a v i o u r I n i t ia l i z e t h e t r a n s a c t i o n a l t e r
c r e a t i n g It

1 I H

Fig 5.14 ATM Design Knowledge - OO Behaviour

• I m p le m e n to r : Who is (are) the implementor(s) of the behaviour?
For example, the behaviour: "execute a financial transaction" is
first implemented by the Transaction class and m odified by its
subclasses (which are the different kinds of transactions).

• P u r p o s e : What is the purpose of introducing the behaviour
for each im plem entor? For exam ple, "execute a financial
transaction" is inherited from the class Transaction to the class
Deposit Transaction (or W ithdraw Transaction) to allow the ATM
User to perform a deposit (or a withdraw) transaction.

• C o m m e n t: Any comment related to the behaviour. For example,
the designer can make a point that this behaviour m ight be
extended to perform more tasks or the behaviour can be achieved
by sending d ifferen t m essages to o ther objects than those
m en tio n ed .

• C o lla b o ra tio n s : W hat are the different messages sent from the

9 9

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

im plem entor to other objects in order to achieve a certain
behaviour? For example, in order to display the balance of a User
Account, the class Balance Inquiry Transaction m ust collaborate
with the classes: ATM User, Account, and Display Screen by
sending them appropriate messages.

• R e tu rn e d o b je c t: What is the value (or the object) returned by
the behaviour after a service is completed? For example, when the
Account class is asked if it is valid, it returns a boolean value
indicating whether it is good or bad account.

As we have described the different ATM states in the domain
knowledge, we can add a subhierarchy describing the states that are
im portant to the designer, such as the ATM state "gathering
information", the comm unications between the ATM controller and
the other parts o f the machine, committing the inform ation to the
database, database files m aintenance, and so on. Our diagram is
similar to the state diagram of [Rumbaugh et al. 91]. However, the
latter mixes states and events but our diagram is sim pler, more
readable, and more expressive; we represent states as nodes and
events as links. An example of describing a dynamic state is the
"Validating Customer Authority": The events changing this ATM state
are that the ATM User either enters the right or the wrong personal
identification number. In the first case, the next ATM state is
"Validating Customer Account” and in the second case, the next ATM
state is "Keeping Bank Card".

OO D esign M ethodology:

The design we present follows more or less th design given by
[Wirfs-Brock et al. 90], however it could be easily changed to follow
the design given by [Rumbaugh et al. 91]. We extend this design by
allow ing the designer the iden tifica tion o f the requ irem en ts
specification and the system functionality by tagging the behaviours
of the correspondent classes.

100

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

5.2.3 ATM Im p le m e n ta tio n K now ledge

In this section, we discuss how we represent the different types
of knowledge about the coding itself, i.e. that are needed by the
programmers and the maintainers. When the programmer originally
creates Smalltalk-80 classes and methods, his/her responsibility is to
encode knowledge about them in COSEE knowledge base. This will
help other programmers and maintainers understand the code. Since
it is not one of our goals to produce an implemented ATM system, we
have devoted the m ajor part o f our em phasis on the dom ain
knowledge and the design knowledge.

One of our research goals is to try to capture in COSEE all the
knowledge about Sm alltalk-80 classes and methods, except the code
itse lf. The purpose is to relieve the program m ers and the
m aintainers from the difficulty they experience when they try to
understand the system from the code itself. They do not have to
open a Sm alltalk-80 browser except for inspecting the code. They
open the im plem entation know ledge brow ser w ith a dynam ic
Sm alltalk-80 brow ser so that whenever they select a class or a
m ethod from the im p lem en ta tio n know ledge b ro w ser, the
corresponding selections are done autom atically in the Sm alltalk-80
browser, and vice versa.

The classes in the design knowledge may not have to one-to-
one in correspondence with the c lasses in the im plem entation
knowledge. A class in the design knowledge might have many
corresponding classes in the im plem entation knowledge and vice
versa. For example, the class ReceiptPrinter in the design knowledge
m ig h t c o rre sp o n d to the c la sse s R e c e ip tL in e P rin te r and
R eceip tL aserPrin ter in the im plem entation know ledge. And the
classes ATM -IO-Device, ATM-InputDevice, ATM-OutputDevice in the
design knowledge m ight correspond to the class ATMInputOutput in
the im plem entation knowledge.

101

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited w ithout perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

Im p le m e n ta t io n C la s se s :

Under the "ST Class" subhierarchy, the program m er specifies
the different ATM classes with their purposes, their category, their
protocols, comments about them, their methods (instance and class
methods), and their variables (instance and class variables). Thus, for
every class, we attach the following key properties (some of them are
represented in the figure in uppercase to point out that they are
extracted directly from the Smalltalk-80 environment) :

m hon* tl.ta * - «cn*lw •# hon* tl.t* * - »toh«
s a

5 A c c o u n t A d e p o s i t—a n A m o u n t

■ th in g
• S T th in g

• S T C la s s
• O b je c t

- T r a n s a c t io n
• D e p o sK T ra n sa c t lo n
• W lth d ra w T ra n a a c tio n
■ T ra n s fa rT ra n a a c t io n
• In q u lry T ra n a a c tlo n

• A T M C o n tro lle r

• p ro p e r t ie s :
- C A T E G O R V : A T M - o b J e e ts
* C O M M E N T : r e p r e s e n t s a B a n k A c c o u n t
• M E T H O D S:

• IN S T A N C E M E T H O D S : .
• w ithdraw ing:

• w ithd raw — a n A m o u n t d e c r e m e n t th e b a ll
• t ra n s fe r ln g :

• t r a n s f e r - a n A m o u n t fro m -onA c c o u n t:
< d e p o s itin g :

< q u ery in g :
• b a la n c e : ~ th e b a la n c e

. C L A S S M E T H O D S : .
- I n s ta n c e c re a tio n :

* c r e a te ; • 'a n A e c o u n t
• V A R IA B L ES: .

- IN S T A N C E V A R IA B L E S : .
• b a la n c e : -c aF lx e d N u m b er* h o ld s t h e am ok

« honk_LLt2---- - so** - C L A S S V A R IA B L E S :.

a • v iew poin t: Im p le m en ta tio n
• s n s a o a B S K n n n g a N M M M i

| R e c o u n t
1

in c r e m e n t t h e b a la n c e b y a n a m o u n t
' 'b a la n c e

S i

Fig 5.15 ATM Implementation Knowledge - ST-80 Classes

• C ategory: Under which category will the class be classified? For
example, a new category called "ATM System" might be created in
the ST-80.

• P r o to c o ls : W hat are the protocol names for the class? For the
class ATM Controller, we created a protocol called "displaying
messages" under which we group all kinds of displaying messages
(d isp lay ing a greeting m essage, d isp laying a rem oving-card
message, displaying a keeping-card message, etc.).

102

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

• In s ta n c e M e th o d s : W hat are the instance methods that every
instance of the class must have? For exam ple, every deposit
transaction will be an instance of the class Deposit Transaction.

• C lass M eth o d s: What are the methods that apply to the class as
general and not to its instances? The creation o f transaction
instances is an example of such methods. For each method, one
can easily see the selector, argument types, and class of returned
va lue .

• I n s ta n c e V a r ia b le s : W hat are the instance variables o f the
class? These variables include the states and any other variables
needed for the im plem entation, which were d istinguished as
different kinds of attributes in the design. The Balance is an
instance variable of the class Account.

• C lass V ariab les : What are the class variables that all instances of
the class will share? For example, a certain checking constant code
m ight be required before the ATM User enters the personal
identification num ber. This code is im plem ented as a class
variable for the class PersonalldentificationNum ber.

I m p le m e n ta t io n B e h a v io u r :

The behaviour is described in terms of ST-80 methods, the
states in terms of instance variables. The purpose of a behaviour
given in the design know ledge rem ains the sam e for the
implementation knowledge. Every description of a class behaviour in
the design knowledge is linked to the implementing method. Method
descriptions include details such as temporary or instance variables
used within the method, or the purpose of every collaboration (so
that the programmer or the tester can check the correctness of every
im plem ented collaboration and in turn the im plem ented method).
The goal is to eliminate, as much possible, the need for recording
actual code. The user has many choices on how to select or display
group of related methods.

103

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

— a e w l . ■ h e r* l ! . a m n t
31

• th in g
• S T th in g

. S T M e th o d
• c r s a t a T r a n s a c d o n

• e r e e t e T r a n s a e t l o n
• t f l s p la y O re e t ln g M B S s a g e

• d l s p le y G r a a t in g M e s s a g e
• d ls p ls y M a ln M e n u

• d ls p le y M a ln M e n u
• p r o m p tA c e o tm tO f -

• p r e m p tA c c o u n tO f -
• d e p o s l t - a n A m o u n t

. d e p o s l t - a n A m o u n t
• w t th d ra w -a n A m o u n t

• p r o p e r t i e s :
• Im p le m e n to r , c l a a a A c c o u n t
• S t p r o to c o l n a m e : w ith d ra w in g

• s y n t a c t i c 1 | | | | (] f |] (l | |] ' | J D f M f f H - f f f f
• c o l la b o ra t io n a :

• N u m b e r t o s u b t r a c t a n u m b e r from a n a n o th a i
• N u m b e r « : to c o m p a r e tw o n u m b e r s

• c o m m e n t d e c r e a s e a n A m o u n t fro m t h e b a l a n c e
• t e m p o r a r y v a r ia b le s :
• I n s t a n c e v a r i a b l e s r e f s r t d to :

• r e a d - o n l y I n s t a n c e v a r ia b le s :
• I n s t a n c e v a r ia b le s u p d a te d :

• b a l a n c e : b a l a n c e le d e c r e a s e d

• t r a n s f e r - a n A m o u r * t o - e n A e s o u m
- t r a n a f e r - a n A m o u n t t o - a n A e e o u n t

• g e t - t h e B a l a n c e
• g a t - t h e B a l a n c e

* b a l a n c e « F b c e d P d n iN u m b e r»

0

Fig 5.16 ATM Implementation - Behaviour

(N.B.: We use in the selector instead of to avoid confusion with
the of the property attached automatically by CODE4)

For exam ple, the m ethod ‘w ithdraw -anA m ount’ would have the
following key properties:

• Im p lem en to r: Who is the class implementor? The class Account.

• S t-pro toco l nam e: W hat is the ST-protocol o f the m ethod?
‘w ithdraw ing’.

• Syntactic P a rts : W hat are the different syntactic parts of the
m eth o d ?

• R e tu rn ed E xpression : W hat is the returned expression?

The balance, which belongs to the class <FixedPointNumber>.

• C o llabo ra tions: W hat are the different m essages sent to
other classes? W e list all messages sent form within the
method. The convention for the property name is creceiver
class> (if known) followed by the selector. The convention

104

Reproduced with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

for the value is to copy the purpose from the descriptor for
the method.

. The message < is sent to the class Number to compare
balance to anAmount.

• The message - is sent to the class Number to subtract
anAmount from balance.

• C om m ent: W hat are any other com m ents that the
program m er w ant to make (norm ally begins with the
purpose)? Decrease the balance by the amount ‘anAmount*.

• T em p o rary V ariab les : W hat are the different tem porary
variables used in the method and their purpose? none.

• In stan ce V ariab les R eferred to : W hat are the different
instance variables referred to (used) in the method and their
p u rp o ses?

• R ead-O nly In s ta n ce V ariab le s : W hat are the instance
variables that have not changed their values? none.

• U pdated In s ta n ce V ariab les : W hat are the instance

variables that are affected by the method?
• balance: the balance is decreased.

Im p le m e n ta t io n M e th o d o lo g y :

Using a COSEE design knowledge base, the programmer “plugs”
the ATM classes among the ST-80 classes as usual. In practice, all
ex isting ST-80 classes and m ethods would be described in a
knowledge base the programmer begins with; making it easier to find
and understand appropriate classes for reuse. However in our
exam ple, only relevant existing ST-80 classes are shown in the
im plem entation know ledge. For exam ple, the im plem entation
k n o w le d g e show s th e S T -80 c la s s N u m b er b e c a u se
PersonalldentificationNum ber is specified as a subclass.

105

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

Starting from a knowledge base that contains the three COSE
viewpoints (the domain, the design, and the existing implem ented
classes), the programmer (the Sm alltalk-80 coder) has a relatively
small amount of work to do (than without COSEE). The programmer's
task is to code the classes and methods in ST-80, at the same time
capturing knowledge about each new one in COSEE. Browsing and
thinking with COSEE should precede the actual coding. Having the
implementation knowledge browser and a ST-80 browser open, the
programmer can do the job more quickly by directly adding another
layer of detail on top of that provided by the existing implementation
know ledge.

If the program m er needs to further understand the purpose,
the design rationale, or any comment related to a specific class or a
specific method, he/she can open the design knowledge browser. For
exam ple, the program m er m ight w ant to know why the c lass
PersonalldentificationNum ber is designed as a subclass of the class
Num ber and not of another class that he/she m ight prefer. To
understand the description of a certain concept, the programmer can
open the dom ain know ledge brow ser (background know ledge)
instantly . If he/she wishes to have four browsers open at the same
time: The ST-80 browser, the implementation knowledge browser,
the design knowledge browser, and the domain knowledge browser,
the program m er can trace a certa in c lass from the ST-80
implementation all the way back to the domain knowledge. This can
be done by making a selection in any browser; and the corresponding
concepts in all the other three browsers would be autom atically
selected by COSEE.

A fter the program m er im plem ents the d ifferent classes and
methods in the ST-80 environment, a simple mechanism can check
that all classes and methods in the implementation knowledge have
been mapped into the ST-80 environment. A list of all classes and
methods that have not yet been mapped can be generated from the
system .

106

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

5.3 F e a tu re s o f K now ledge M anagem en t System s U seful
fo r S o ftw are D ev e lo p e rs

Ideally, a system developer expects features in a development
environm ent that provide as much assistance and guidance as
possible. Today’s developm ent environm ents tend to assist the
developers on details of the programming process or, at the design
end, assist by making certain types of analysis techniques (such as
entity-relationship diagrams or dataflow diagrams) easier to do by
extensive graphical aids. However, since they lack any knowledge
engineering features, both in knowledge representation and user
in te rface , they do not assist the developer very m uch in
understanding concepts. This is of course the main purpose in the
research we are undertaking; to em phasize the im portance of an
environment that can both represent and assist in understanding the
kind of conceptual and descriptive knowledge that are needed to
understand the various stages of the development process. This is
done at two levels: the knowledge representation level and the user
interface level.

In this section, we will explain what are the knowledge
representation features and the user in terface features that a
developm ent system should possess for our view of knowledge
management. We will also explain what are the features that now
exist and the ones that need to be added in CODE4 and COSEE.

5 .3 .1 K now ledge R e p re s e n ta tio n F e a tu re s

In th is section , we w ill p resen t the m ain know ledge
representation features implemented in CODE4* . In our experience,
these features are sufficient to be used in software engineering, hence
we haven’t added or proposed other know ledge representation
features in CODE4 or in COSEE.

* Section S. 1.1 introduces the basic concepts.

107

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

For our purposes, we w ill h ighlight the m ost im portant
know ledge representation features that are needed for softw are
engineering and how users can make use o f these features in CODE4
and in COSEE:

• The ability to express knowledge in different forms without being

limited to a specific form of a representation:
In CODE4, the user can make statements about concepts,
i.e. types and instances. The user can enter knowledge in
an unconstrained natural language, if desired, and still do
some useful knowledge management with it, or can use
more formal expressions. CODE4 can be as simple as an
outline processor or as complex as a first-order logic
system .

• The ability to organize knowledge in a way sim ilar to the way

people m anipulate knowledge:
In CODE4, knowledge can be organized in hierarchies,
which is a very natural way for people to think.

• The ability to have some form of property inheritance for the
concepts in the knowledge base; i.e. the user does not have to
describe the properties of a concept again if they are described in
its parent concept:

In CODE4, concepts are arranged in hierarchical conceptual
defin itions or descrip tions based on the notion of
inheriting properties to be the most useful and frequent
knowledge organizing activity for the applications in use.

• The ability to perform some inferencing on the knowledge

encoded in the knowledge base; i.e. to infer new knowledge from
ex is ting know ledge and to perfo rm som e check ings and
validations:

Two kinds of inferencing exist in CODE4: fast inferencing

108

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

(th a t can be done w ith o u t co m p ro m isin g the
expressiveness of the user) and slow inferencing (that
could be done only on demand in the background and that
could handle complex cases).

• The ability to attach incremental statements about statements; i.e.
make statem ents about other statements:

CODE4 has fa c e ts , i.e. properties of statements. Users can
add their own or use the built-in facets (such as modality,
status, statement comment, etc...). For example, modality
is a facet that specifies whether the property is necessary,
typical, optional, inappropriate, or false. For example, in
the ATM example, we could say that a bank customer
“typically” has a bank card.

• The ability to express properties, for a certain concept, that do not

inherit to instances:
CODE4 has the m etaconcepts feature that is used to
express knowledge about the concepts them selves; i.e.
property values do not inherit to sub-concepts. For
exam ple, in the ATM exam ple we could attach the
m etaconcept class name to every concept in the domain
knowledge to act as a pointer to the corresponding class
in the Sm alltalk-80 environm ent (the account concept
points to the class name Account in the Smalltalk-80).

• The ability to have some support for natural language:
The representation in CODE4 allow s the user to use
ambiguous terms, synonyms, concepts without names, and
to rename things. CODE4 has a facility for the treatment
of linguistic knowledge, in particular, terminology; i.e. the
association betw een concepts and phrases that denote
them. CODE4 uses separate concepts to represent terms,
i.e. that encode properties of the term, rather than the

109

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

concept itself. For example, in the ATM example, we could
associate the following term properties with the ‘bank’
concept:

term: bank

A nother feature in CODE4 is the ab ility to m ake
term inological inferencing. For exam ple, the statem ent
“increase the amount” could be recognized as equivalent
to “increase the balance”, since these are synonyms.

• The ability to look at the knowledge from different perspectives:
In CODE4, the user can label with a perspective name any
concept or property in the knowledge base. The system
can then show only those concepts or properties that
belong to that perspective. (This acts as an additional
grouping m echanism , o rthogonal to the h ierarch ica l
grouping we have used to structure our three viewpoints).

5.3.2 User In terface Features

A knowledge representation system is not very useful without a
good user interface. The more powerful a system becomes, the more
important the user interface capabilities become. The importance of
the user in terface stems from the role it plays in the flow of
knowledge between the user and the system.

part of speech:
p lu ral:
french equivalent:

term of:

synonym s:
m eanings:

bank (i.e. a back pointer to the
bank concept)
financial institution
(pointers to other concepts named
by this term, e.g. river bank)
noun
b a n k s
b a n q u e

110

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

In designing a user interface, the designer should take into
consideration human abilities and who the intended users are; i.e. the
user’s limitations and strengths. A user interface's main function is to
provide assistance to the user in accessing and structuring the
inform ation in the system. If the information has a hierarchical
structure, then a hierarchical display is a natural way for people to
m anipulate know ledge e ither tex tually or graphically . Special
symbols and notations can be used to remind the user of stored
knowledge and improve the communication effectiveness.

We will classify user-interface features generically into those
intended to assist in knowledge acquisition and those intended to
assist in knowledge retrieval. By know ledge acq u is itio n , we mean
obtaining knowledge from the user (editing, reasoning, structuring,
browsing, refining, brainstorming, etc...). By knowledge retrieval, we
mean helping the user to extract and review existing knowledge (e.g.
brow sing , m ask ing , d iagram m ing , g raph ing , search ing , cross
referencing, etc...). Most of the features that we will discuss are
essentially knowledge retrieval features; they assist the user in
reviewing the knowledge in one form or another or restricting what
he/she sees. However, knowledge retrieval is also an im portant
activity during knowledge acquisition; frequently during knowledge
acquisition, the user’s need is not necessarily to add new knowledge
but to look at the existing knowledge to decide what to do next (It is
for this reason that we have listed the feature ‘browsing’ as being a
feature for both knowledge acquisition and knowledge retrieval).
Some features are specifically intended for knowledge acquisition; e.g.
adding/deleting a concept, adding/changing or deleting a value to a
property or restructuring the knowledge base in some way. However,
these features are relatively small s*» of the total number of the user
interface features needed in a knowledge management system, and
are norm ally designed to work with the retrieval features (for
example, in CODE4 a subwindow browser uses ctrl-a for easily adding
a new subconcept of a concept in the hierarchy).

Two im portant concepts in CODE4 need to be defined before
discussing the user interface features:

111

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

1) The knowledge map: A specification of a network of relations.
Typ< of know ledge m aps include is-a h ie ra rch ies , property
hierarchies, etc. Knowledge maps are treated as directed graphs and
are displayed in subwindows of browsers.

2) The knowledge mask: A filter that determines whether a concept
will be included in a knowledge map (and thus displayed to the user).
It contains a logical expression relating a set o f boolean conditions
that are applied to each concept. Masks control the visibility of
concepts and properties; they are used for hiding specific sets of
concepts, as well as more detailed patterns of knowledge. Each
knowledge map is defined by a knowledge mask.

We will highlight the most im portant user interface features
that are needed for software engineering and describe how users can
make use of these features in CODE4 and in COSEE;

Existing User Interface Features in CODE4

• Diagramming or graphing capabilities provide the user with
another conception of the knowledge: A diagram presents the
relations between different components using different layers of
details. For exam ple, concept hierarchical diagram , part-whole
diagrams, state-transition diagrams, data flow diagrams, etc...:

In CODE4, there are many types of diagrams such as: The
concept (is-a) hierarchy, the property hierarchy, the
re la tion h ierarchy (e.g . sta te tran s itio n , part-w ho le
diagram,...). For example, as we did in section 5.2.1, we
can draw the domain concepts, the finite state diagram,
the different parts of the ATM.

• The ability to assist the user to create and manipulate knowledge
bases quickly; (brainstorming or sketching):

112

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

By making use of hot keys in C0DE4, the user can create
and manage knowledge quickly. For exam ple, ctrl-a
allows the user to create a concept (property) child, ctrl-d
for concept (or property) deletion, ctrl-b then ctrl-p for
reparenting. Also, the user can change any of these hot
keys for his/her own purposes.

• The ability to help the user find knowledge quickly; i.e. the
"Navigation" or "Browsing" feature: Browsing can be done either
textually or graphically:

In CODE4, textual browsing allows the user to display
relationships in hierarchies by indentation while graphical
brow sing d isp lays the re la tions as nodes-and-links
allowing the user to arrange and re-arrange them in
different ways. Functionality between text and graphic
modes is made as consistent as possible. Both types of
browser perm it rapid hypertext-like navigation in and
viewing of large hierarchical structures with m ultiple
inheritance. The user can sw itch between different
browsers at any time; windows are dynamically updated.
Browsers are used to view and manipulate portions of a
knowledge base. Each browser is composed of one or
more subwindows. Each browser subwindow has an
interaction paradigm; it displays knowledge either as a
graph, an outline processor, a user language (simple text
input by the user), or a matrix (like a spreadsheet).
Where possible, however, operations are done in the same
w ay, reg a rd less of w hat in te rac tio n paradigm a
subwindow is using. User can select/deselect single or
m ultiple nodes or links or subhierarchies. D ifferent
commands can be perform ed from within the browser
subwindows with menus, action buttons, or hot keys.
Searching and replacing has an im pact on the overall
system productivity and effectiveness; it reduces the time
spent by the user in locating and updating knowledge.

113

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

• The ability to detect and warn about problems and possible
con trad ictions:

In CODE4, the system warns the user if he/she attempts to
delete a property that has a value (i.e. a statem ent).
CODE4 could interactively check with the user if there are
different terms for the same concept or one term used for
different concepts. Contradictions could be detected, off
line, by exporting the knowledge base to a first-order
log ic subsystem or o ther form al language system .
A ssociated with each know ledge map is an optional
feedback panel tha t d isp lays a lis t o f a ttem pted
com m ands, comm and resu lts , suggested actions, and
suggested com m ands that help the user solve the
problem . CODE4 d isp lays in the feedback panel
suggestions in response to any user action that does not
seem consistent or reasonable.

atm feedback

reparent [ATM action] to ATM tliinci [p
copy ATM thing [~b]
exclude [statement of related actions about create transac...]
update statement value
update statement value

failed; Cannot perform edit request You are attempting change the superconcept of
a subject such that the subject no longer inherits the predicates of one or more of its
statements. You should remove the statements first (Future enhancement You will
be able to override this).

delete statement statement of acient abou
delete statement statement of patient abo
delete statement statement of recipient at
delete statement statement of agent abou
delete statement statement of patient abo
delete statement statement of recipient at

Fig 5.17 ATM Feedback Panel: an attempt to perform an
operation (on the concepts) with a warning to the user that
it might cause a conceptual problem. Possible “cures” are listed
in the lower left pane.

114

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

• The ability to allow the user to filter or mask knowledge according
to some criteria to reduce the amount of information visible:

In CODE4, associated with each knowledge map and with
its brow ser subwindow is a knowledge mask, and a
concept selector. A knowledge mask (or selector) allows
the user to mask (or highlight) in reverse video some
concepts or properties according to some criteria. Many
criteria are available (Fig 5.18). Users can select parts of
the hierarchy in a browser to be visible or invisible.

Mask on Ita hierarchy

lias a name matchmci the string:
- Is in the hierarchy of any of:
- NOT Is a descendent of (or equal to) one of:
- NOT Is a system concept (term, statement or metaconcept)

delete
negate
refresh

deposit

Inspect
browse^m£lementors

has a name matching the string:
has a property value matching the string:
has any term matching the string:
has empty property value
has metaconcept property ■ value:
has property * value:
Inherits all of the properties:
Inherits any of the properties whose name matches the string:
inherits any of the properties:
inherits to all of:
is a descendent of (or equal to) one of:
is a system concept (term, statement or metaconcept)
is an Instance
is in the hierarchy of any of:
Is included in the set. ____ _____

Fig 5.18 ATM Mask: shows a search for all
concepts whose name do not start with ‘deposit’

115

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

• A tabular or matrix form can present concepts and their important
properties in two dim ensions to perm it the user to easily
understand the sim ilarities and differences between them:

In general, tables help make decisions by focusing on the
properties that specific concepts possess or do not possess.
In CODE4, a m atrix subwindow allows the editing of
various kinds of inherently tw o-dim ensional data; e.g.
concepts may be displayed on one axis and properties on
another. Cells in the m atrix contain values of the
statement involving a given concept and a given property.
A Property Comparison Matrix (PCM) allows the user to
view and compare properties for two or more concepts in
tabular format (similar to a spreadsheet). These concepts
may be siblings or arbitrarily chosen. The user can mask
out concepts or properties or can have different options
for viewing the matrix.

□depoik-an Amount Owfchdnw-anAmourt atrvttfer~«nAmountta>aQet-fteBelanee
a

□fcnptemirtor
Account fits* Account jdasa Account pass Account

□St pratoed name
jJepoeldng jttxirwlng jymalentafl jtuatylng

O comment
jdd anAmount to the
balance

jtecrcue anAmount
twn tht balance

/tranafer laa
withdraw torn the
loorca Account then

pttnctthe balance

■returned o^retilon
* balance
«FbtedPointNumber*

-balance
«FbeedPolntf*jmbcr»

* balance
4FtedPoir«Numbr>

-balance
«FbadPo(ntNumb«r>

□balance
balance b Increase^ Jialanca Is daentsad balance Is d^raased

□ aef uAhdrv*- anAmount
t * jo decrease the

balance of aetf
r'A

OanAccomt deposlt-enAmour*
p a Jo Increase the

balance of anAccount

□ Number -
J s subtract a txmbaf
ton an another

□Number <
Js compare tan
numbers

P *

□Number*
jaaodtwo numbtti
(ooilMr

> • P «

&

Fig 5.19 ATM Property Comparison Matrix

116

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

• The ability to provide the user with overall control of the system:
A control panel in CODE4 is a window used to configure
the CODE session to the user's needs. The user can specify
the level of expertise desired (as beginner, intermediate,
expert, or developer). An environment mode is used to
set param eters that apply to the system as a whole
(including the font size and ClearTalk parsing). A
Knowledge base control panel allows the user to manage
different kinds of knowledge bases. Textual and graph
form at con tro l panel are used to de te rm ine the
appearance of browser subwindows using the outline and
the graphical notation interaction paradigm respectively.
A help control panel provides help about many aspects of
the system.

CODE 4.1B' Dee 1992 Copyright (c) Uniuenily of Ottawa

User Expertise

► beginner
► intermediate
► expert
► developer

Control Panel

► environm ent
► KBs
► masks
► browser types
► graph format
►outline format
► matrix format
► help

Default KB Path
/home/csiO/usr2/ai/code/cdBase/'.ckb

Prompt far
window frames?

►yes »no

User Name
nagj,_______

Comfirm when
closing browsers?

►yes ► no

Font Size

► small ► default large ►system

Speed up by
deferring window updates?

► always ► on edit ►never

Scroll Bar
Position

► left ► right

Cleartalk
parsing?
►yes ►no

Speed up by
using more memory?

► always ► maybe ► never

Speed up by
removing details?
►yes ►no

Check Integrity
after every update?

►yes_____________ »no

Fig 5.20 ATM Control Panel

117

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

U ser In te rfa c e F ea tu re s A dded to C O SEE

• The ability to easily discover how a domain or design concept is
reflected in the implementation i.e. how it is actually translated
into a code:

In COSEE, the user can dynamically link any of our three
kinds o f viewpoints (dom ain, design, or im plem entation
knowledge) browser to the Sm alltalk-80 browser if there
is a need for more detail in understanding the coding or if
there is a need to see the actual coding. W henever the
user changes a selection in any one of these open
browsers, the other browsers change their selection; i.e.
any browser is driven by other browsers. For example, in
the ATM example, if the user changes the selection in the
domain knowledge to the ‘transaction concept’ (or the
‘printing property’), other browsers (design know ledge,
im plem entation know ledge, and Sm alltalk-80 brow ser)
change their selection to the corresponding “Transaction”
class (or the “printTransaction method”).

• The ability to assist in “reverse engineering” existing code:
In COSEE, the user can add the name of a class in the
im p lem en ta tio n k now ledge v iew p o in t (o r in the
dom ain/design knowledge viewpoint through the use of
pointers) and the system can autom atically generate a
subhierarchy corresponding to the one in Sm alltalk-80, or
the system can generate only one of its subclasses, as
explained earlier in section 5.1.2.3. Also generated in the
know ledge base with every new class are the class
protocols, instance and class methods, and instance and
class variables. Also, the system could generate, from the
im plem entation know ledge, S m alltalk -80 c lasses and
m ethods (with their variables); i.e . a step c loser to
autom ating program m ing.

118

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

5 .3 .3 P roposed E nhancem ents

In this section, we propose some useful features that could be
added to both CODE and COSEE. We remind the reader that COSEE is
an environm ent built on top of the knowledge management system
CODE, for the sake of capturing the software development knowledge
and creating a unified management system for software development.

5.3.3.1 Proposed Enhancements to CODE4

• The ability to automatically create a hierarchy (either concepts or
properties) that corresponds in some way to an existing one with
options to adapt it to the new location and meaning. Often the user
wants to create a hierarchy that has a certain ’•elation to an
existing one (i.e. a function of it). For example, a hierarchy of
im plem entation classes could be created corresponding to a
hierarchy of design concepts. There should be a means for the
user to map the names since we may want the same structure but
with different names (for example, a rule that changes upper case
to lower case or attaches a certain string to the names).

• The ability to perform additional operations on knowledge bases:
For example, to split a knowledge base into two or more, merge
two or more knowledge bases, copy and paste between knowledge
bases (CODE’S facility for this is only rudimentary).

• The addition of m echanisms that help extract knowledge from
specific textual sources, consult a dictionary, and enter it as
concepts into the knowledge base. Natural language documents
are the m ajor medium by which people organize and store
knowledge; e.g. requirements specifications, or design descriptions.
By scanning a document a sentence at a time, CODE could identify
every noun and every verb phrase, get some of their properties

119

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

from a dictionary or from other knowledge bases, check them in
the knowledge base, and consult the user before encoding them in
the knowledge base (work has begun on this).

• The ability to access an on-line dictionary to give parts of speech or
possible synonyms. This will help the software developers and
maintainers to get quick definition of commonly used terms and
concepts in the process of software development (work has begun
on this).

• The ability to provide further assistance for structuring knowledge

at the conceptual level. This will help the user in the knowledge
acquisition task and also it will help in detecting conceptual
contradictions and inconsistencies. For example, the system might
suggest to the user what to do next and why. The system might
also find problem s with something the user has added to the
knowledge base: For exam ple, a concept that has conflicting
properties (a certain introduced property contradicts an inherited
one), or a property inherits two conflicting values from two
different parents. The system could look at the values of a certain
property at all its superproperties to check if it they have been
changed in a consistent way. A pop up window critiquing the
structure of the knowledge would provide a lot of help to the user
in building a knowledge base.

• The ability to share knowledge bases concurrently (groupware).
Thus, softw are developers can access and m odify a shared
knowledge base which they can all both add and retrieve from.
The system should provide com m unication m echanism s, e.g.
alerting anyone who could be affected by a change.

120

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

5.3.3.2 Proposed Enhancements to COSEE

The following mechanisms could be added to COSEE:

• A mechanism to dynamically link COSEE to a CASE tool (e.g.
ObjecTime [Selic et al. 92]); that accesses the knowledge base,
extract and incorporate the domain knowledge, and help end-users
develop and m aintain the ir own system s using h igh-level
languages or diagramming tools.

• A mechanism to link COSEE to a documentation tool to have access
to a com plete docum entation system , e.g. to export concept
descriptions as near-English text.

• A mechanism to link COSEE to a formal specification system such as
VDM [Jones 89]. This will help the validation of the specifications
of the designed system. The benefit is that the designer will be
able to locate and adapt specifications in the knowledge base, and
then execute them. Test case data can be automatically generated.

• A highly restricted natural language mechanism to allow users to
express requests in an informal-like and compact fashion, sim ilar
to the front end of LaSSIE.

• A mechanism to link COSEE to programming language
environm ents o ther than Sm alltalk-80 environm ent, like C++,
Pascal, Lisp, and so on.

121

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

5 Software Development Using a Knowledge Management System

5.3.3.3 Enhancements to the Knowledge Base

The following knowledge bases could be available to COSEE to assist a
developer further:

• A knowledge base that describes available softw are development
tools in order to allow the system developer to select the most
suitable and the most convenient tool.

• A software engineering ontology knowledge base that explains
genera l co n cep ts in the so ftw are dev e lo p m en t p ro cess :
methodologies, tools, phases, people-involved, platforms, resources,
heuristics, e tc

• A know ledge base that describes all existing im plem entation
m odules that can be reused, g ive a p a rticu la r cho ice of
im plem entation language. For exam ple, a know ledge base that
explains all the Smalltalk-80 classes and m ethods could be very
helpful to programmers (and especially novice ones). This kind of
know ledge base should contain all know ledge needed by a
developer except the actual code itself. The goal is to allow the
programmer to easily understand a unit of code and then to reuse
it.

122

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Chapter 6

Summary & Conclusions

In this chapter, we will sum m arize what we believe our
research has demonstrated and we will give some general conclusions
about the relation of knowledge engineering to software engineering.

6.1 Conclusions from the Experiment

W e believe our research shows a prom ising approach to
p rov id ing a un ified know ledge m anagem ent environm ent for
softw are developm ent. W e also believe that, when suitably
developed and integrated with other tools, it could provide a better
environm ent for software knowledge management than current non
integrated tools such as programming language environm ent, CASE
too ls, hypertex t system s, or o ther know ledge-based softw are
assistants. Only years of use in real software development can truly
dem onstrate this, however.

W e addressed a m ajor problem in developing a software
system , i.e. the know ledge needed in every softw are engineering
phase is scattered in different places and is not integrated. For
exam ple, the domain knowledge is often captured inform ally in a
natural language docum ent or form ally for ju s t the purpose of
developing software systems and not for the documentation purpose.
The design knowledge may be represented using a CASE tool that has
no link to the tool used to capture the domain knowledge or even to

123

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

6 Summary & Conclusions

the implementation. The implementation knowledge may be buried
in the code itself without any link to the tools used for capturing the
domain or the design knowledge. The developm ent environm ent
does not integrate these different kinds of knowledge. The result is a
group of separate systems and tools that render the softw are
development process difficult and potentially “brittle” . We have tried
to provide a unified know ledge m anagem ent environm ent for
softw are developm ent that can help e lim inate the boundaries
betw een all required softw are developm ent know ledge and the
developm ent environm ent itself.

However, our environm ent cannot be a stand alone software
development environment; it needs to be linked to various kinds of
tools (such as CASE tools, formal specification systems, documentation
tools) that will continue to be used as the primary means of software
development for the foreseeable future. Although we acknowledge
that there will certainly be some problems in the process of linking
the development environment to other tools and systems (including a
knowledge-based system), we believe that the contribution o f this
approach is worth further research. M ost of these problem s will
occur if the development environm ent and these systems (or tools)
are not implemented using the same programming language.

Our approach assumes that the software developm ent process
should begin with a natural description of the domain so that people
may understand it w ithout necessarily keeping in m ind that a
software system will be later developed. Thus, our main emphasis is
to enable the software personnel to understand every concept in the
domain knowledge. We have emphasized more the needs o f the
domain people, not the machine that implements the description; i.e.
to describe the domain naturally rather than being based on certain
design methodologies or programming languages.

Our conception for system developm ent using COSEE is as
follows:

12 4

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

6 Summary & Conclusions

• The analysis phase starts when the systems analyst encodes,
with the assistance of domain experts, the domain knowledge in a
knowledge base in CODE4. After a series of refinements to the
know ledge base (co llaborating with the dom ain expert), the
systems analyst can start identifying concepts that might become
good candidates for the design phase (a step toward reducing the
gap between the analysis phase and the design phase).

• In the design phase, the system designer encodes the design
knowledge in the knowledge base. System specifications are
tagged for later validation and verification.

• In the implementation phase, the programmer simultaneously
does the actual system coding and encodes knowledge about it in
the knowledge base. Thus his/her knowledge is captured for those
who will need it.

• The testing of the system can be done by testing every module in
the coded system and verifying it against the design knowledge.

• The validation of the system can be done off-line by increasing the
degree of formality in the knowledge base and by exporting it to
an external formal specification system for checking. Such systems
can reduce errors and, to a some extent, ensure that the designed
system m atches the requirem ents specification. For exam ple,
[Skuce and Mili 93] discuss the application of a formal specification
system [Boudriga 92] to the ATM example. They focus on how to
understand and validate the behaviour of objects given initially in
terms of natural language descriptions of actions, or events, and
sequences of events.

• The maintenance of the system would now involve knowledge

management, done in all the three viewpoints of COSE. New

125

R e p ro d u c e d with p e rm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

6 Summary & Conclusions

requirements and more domain analysis can be encoded in the
domain knowledge by adding or replacing existing concepts. The
rationale would be recorded as well. This modified knowledge
might require some adjustment to the design knowledge and the
implementation knowledge. The m aintainer, if not fam iliar with
the system, can understand the system from any or all these
view points and then s ta rt doing the m ain tenance in th is
knowledge base and in the actual system . If the m aintainer
perform ed code m aintenance w ithout updating the know ledge
base, a mechanism in COSEE could be developed to detect the
unmatched concepts resulting from comparing the implementation
knowledge concepts and the actual im plem entation. It could
autom atically update some of the im plem entation knowledge as
we have described. Compared to the Smalltalk environment as it
curren tly ex ists , our environm ent w ould m ake availab le a
considerable amount of new information in a highly organized and
accessible structure. The goal is to make this exactly the kind o f
information one seeks when trying to program in Smalltalk.

We believe that COSEE can contribute to all these phases, in
particular to the maintenance phase, since it is widely acknowledged
that this phase consumes more than 70% of the software development
cycle.

6.2 G eneral C on clu s ion s on the R e la tion o f K now ledge
Engineering to Softw are Engineering

Software engineering is an established d iscip line that has
yielded more than two decades worth of tools and techniques.
Knowledge-engineering, on the other hand, is an emerging discipline.
Only recently have researchers tried to m erge both d iscip lines.
Representing knowledge about software is an im portant research area
and a prerequisite to engineering expert-level systems to assist with
softw are developm ent.

126

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

6 Summary & Conclusions

Despite its lack of maturity, knowledge engineering promises to
have a noticeable impact on software engineering in general. As
Belady [Belady 91] points out: "For software engineering, until very
recently a discipline unto itself requiring, basically, teams of people
with CS degrees and an inclination to stay up nights with computers,
is broadening, expanding in scope to intersect irrevocably with the
discipline of knowledge engineering”. He explains also that, as there
is a growing demand to create large and complex software systems,
there is a growing need for integration of applications, of hardware
components, and ultimately of the people who use the system to work
together across a network.

W e believe that the future of softw are developm ent will
require the functionality of many systems collaborating smoothly to
assist systems personnel in software development and maintenance.
Thus, systems personnel can encode their knowledge (domain, design,
and im plem entation) in a knowledge base using a knowledge
management system, and can interact with a closely coupled CASE
tool or other knowledge-dependent systems to access this knowledge
base or other knowledge bases in distributed systems. As Chen et al.
[Chen et al. 92] point out: "Tom orrow 's com plex, integrated
applications w ill be developed using a com bination of several
enabling technologies (database- and know ledge-based system s,
object-oriented technology, and hypermedia)".

Since software engineering is a knowledge intensive activity,
addressing the softw are knowledge issue is a fundam ental step
towards solving the software crisis. We believe we have taken a small
step toward freeing software development from some of its main
p ro b lem s.

127

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Bibliography

Am briola, V ., P. C iancarini, et al. (1991). “Towards Innovative
Software Engineering Environm ents.” Journal Systems Software 14:
17-29 .

Basili.V. (1990). “Viewing M aintenance as Reuse-O riented Software
Development.” IEEE Software January: 19-25.

B elady, L. (1991). “From Softw are E ngineering to know ledge
Engineering: The shape of the software industry in the 1990s.”
In terna tiona l Journa l o f Softw are E ngineering and K now ledge
E ngineering 1(1): 1-8.

Bhansali, S. and M. Harandi (1990). "The role of derivational analogy
in reusing program design". Knowledge-Based Software Assistant '90,
Syracuse, NY, 28-41

Booch, G. (1991). “Object Oriented Design with Applications.” Redwood
City, CA, Benjamin/Cummings.

Boudriga, N ., A. Mili, et al. (1992). “A Relational M odel for the
Specification of Data Types.” Computer Languages 17(2): 101-131.

Chen, M. and R. J. Norman (1992). “A framework for Integrated CASE.”
IEEE Software March: 18-22.

Conklin, J. (1987). “Hypertext: An Introduction and Survey.” I E E E
C om puter September: 17-41.

128

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

Conklin, J. and M. L. Begeman (1989). “gIBIS: A Tool for all Reasons.”
Journal o f the American Society fo r Information Science May: 200-
213 .

Devanbu, P., R. J. Brachman, et al. (1991). “Lassie: A Knowledge-Based
Software Information System.” Communications o f the ACM 34(5):
3 5 -4 9 .

Esp, D. G. (1991). "A Beginners experience of Smalltalk-80 for the
evolutionary prototyping of an expert system ". A p p lica tions and
Experience o f Object-Oriented Design , 5-10

Forte, G. and R. Norman (1992). “A Self-Assessment by the Software
Engineering Community.” Communications o f the ACM 35(4): 28-32.

Freeman, P. (1987). “A Conceptual Analysis of the Dacro Approach to
C onstructing Softw are S ystem s.”/ £ £ £ Transactions on Softw are
E ng ineering 13(7): 830-844.

Green, C., Luckam, D., Balzer, R., Cheatham, T. and Rich, C. (1983).
“R eport on a K now ledge-Based Softw are A ssistan t.” Rome A ir
Development Center Report: RADC-TR-83-195.

Greenspan, S. J. et al. (1988). "Toward an Object-Oriented Framework
fo r D efin ing serv ices in Future In te lligen t N etw orks". I E E E
In ternational Conference on Com m unications 88, Philadephia, 867-
873

Hayes-Roth, F. et al. (1991). “Frameworks for Developing Intelligent
Systems.” IEEE Expert June: 30-39.

Jarke, M. (1992). “Strategies for Integrating CASE Environments.” IE E E
Softw are March: 54-61.

129

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

www.manaraa.com

Johnson, W. L„ S. M. Feather, et al. (1991). “The KBS A Requirements/
Specification Facet: ARIES.” In Knowledge Based Software Engineering
'91 Syracuse, NY : 48-56.

Jones, C. (1989). “Systematic Software Development Using VDM (2nd
edition).” London, Prentice Hall.

Kobsa, A. (1991). “Utilizing Knowledge: The Components of The SB-
ONE Knowledge Representation W orkbench.” Principles o f Semantic
N etw orks. Los Angeles, Morgan Kaufman. 457-486.

Lenat, D. and R. Guha (1990). “Building Large Knowledge Based
Systems.” Reading, MA, Addison Wesley.

Lethbridge, T. C. (1991). "A model for informality in knowledge
representation and acquisition." Workshop on Inform al Computing„
Santa Cruz, Incremental Systems.

Lowry, R. (1991). “Software Engineering in the Twenty-First Century.”
Automating Software Design. Cambridge, MA: AAAI Press/M IT Press
6 2 7 -6 5 4 .

L ucarella, D. (1990). "A model for H ypertext-based inform ation
retrieval". The First European Conference on H ypertext, Paris, France,
8 1 -9 4

M acGregor, R. (1991). “The Evolving Technology of C lassification-
based Knowledge Representation Systems” . P rincip les o f Semantic
N ets. San Mateo, CA, Morgan Kaufmann. 385-400.

Majidi, M. and D. Redmiles (1991). “A Knowledge-Based Interface to
Promote Software Understanding.” CA: IEEE Computer Society : 178-
185.

Nash, C. and W. Haebish (1991). “An A ccidental translator from
Smalltalk to ANSI C.” OOPS messenger 2(3): 12-23.

130

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Neighbors, G. (1984). “The Draco Approach to Constructing Software
from R eusable C om ponents.” IEEE Transactions on Softw are
Engineering 10(5).

Nerson, J.-M. (1992). “Applying Object-Oriented Analysis and Design.”
Communications o f the ACM 35(9): 63-74.

N ielsen, J. (1990). “The Art of N avigation Through H ypertext.”
Communications o f the ACM 33(3): 298-309.

Norman, R. J. and M. Chen (1992). “Working Together to integrate
CASE.” IEEE Software March: 12-16.

Norman, R. J., W. Stevens, et al. (1991). "CASE at the start of the
1990’s". 4th International Workshop on CASE, Irvine, CA, 128-139

Pugh, J. and W. Lalonde (1990). “Inside Smalltalk.” N.J., Prentice Hall.

Ramesh, B. and V. Dhar (1992). "Design Rationale Capture and Use in
Remap Project". AAAI workshop on Design Rationale capture and Use,
San Jose, 221-225

R eubenstein, H. B. and R. C. W aters (1991). “The Requirements
A pprentice: Automated A ssistance for Requirements A cquisition.”
IEEE Transactions on Software Engineering 17(3): 226-240.

Rich, C. and R. W aters (1989). “The Programmer's Apprentice: A
Research Overview.” IEEE Computer 21(11): 10-25.

Robson, D. J. a. B., K. H. and Cornelius, B, J. and Munro, M. (1991).
“Approaches to program Comprehension.” Journal Sys. Software 14:
7 9 -8 4 .

Rumbaugh, J., M. Blaha, et al. (1991). “Object-oriented Modeling and
Design.” Englewood Cliffs, NJ, Prentice Hall.

131

R e p ro d u c e d with p e rm iss ion of th e copyright owner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Sametinger, J. and G. Pom berger (1992). “A hypertext system for
literate C++ programming.” Journal o f Object-O riented Programming
(J OOP) January: 24-29.

Schoen, E. a. S., R. G. and Buchanan, B. G. (1988). “Design of Knowledge-
Based Systems with a Knowledge-Based Assistant.” IEEE Trans, on SE
14(12): 1771-1790.

Selfridge, P. G. (1990). "Integrating Code Knowledge with a Software
Inform ation System ". K now ledge-B ased Softw are A ssis ta n t ‘90,
Liverpool NY, 183-195

Selic, B., G. Gullekson, et al. (1992). “ROOM: An Object-Oriented
M ethodology for Developing Real-Tim e System s.” CASE'92 F ifth
International Workshop on CASE. Montreal, Quebec, Canada.

Skuce, D. (1992). “A Review of ‘Building Large Knowledge Based
Systems'* by D. Lenat and R. Guha.” The A l Journal to appear.

Skuce, D. and A. M ili(1993). “Behavioral Specifications in Object-
Oriented programming”, in preparation.

Skuce, D. and T. Lethbridge (1992). “A Knowledge Representation for
Interactive Knowledge M anagement.” in preparation.

Smeaton, A. F. (1991). “Retrieving Information from hypertext: issues
and problem s.” European Journal o f Information System s 1(4): 239-
247 .

Smith, D. R. (1990). “KIDS: A Semiautomatic Program Development
System .” IEEE Transactions on Software Engineering 16(9): 1024-
1043.

Tan, Y. M. (1989). “A Proposed Program D esign A ppren tice.”
International Journal Conference on Artificial Intelligence ' 89. Detroit,
MI, 272-278.

132

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Urban, J. E. and S. Kaphan (1992). “The impact of Undergraduate
Software Engineering Education on CASE T ools.” Int. Journal o f
Software Engineering and Knowledge Engineering 2(2): 263-276.

W aters, C. Richard (1981). “The Programmer’s Apprentice: A Session
with KBEmacs.” IEEE Transactions on Software Engineering 11(11):
1 2 9 6 -1 3 2 0 .

W hite, J. L. and S. Kaphan (1989). “Implementing Lisp on standard
hardware.” Sun Technology 2: 63-70.

W irfs-Brock, R., B. Wilkerson, et al. (1990). “Designing Object-oriented
Software.” Englewood Cliffs, NJ, Prentice Hall.

133

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

